o] '

VORKSHOP O AUTOMATIC DEDUCTTON
MIT
| Canbridge, Mass.

'_ ' R ang. 17 - 19, 1977

COLLBECTED ABSTRACTS

T4 ’
: C. L. Chang and J. R. Slagle _ _
i} © .. . Using Rewriting Rules for Connection Graphs to Prove Theorems.
I D. M. Sandford .
= Hereditary Iock - Resolution: A Resolution Refinement Carbining Lock
i Resolution and the Model Strategy.
.- I. P. Goldstein and M. L. Miller
i PATR: Planning and Debugging in.a Predicate Calculus Problem Solver.
M. C. Harrison and N. Rubin %
Some Thoughts on Resolution and Natural Deduction.
W. W. Bledsoe . : ,
| ' A Maximal Method for Set Variables in Automatic Theorem Proving.

A Theorem Prover for Elementary Set Theory.

5. Daniels et al.
Incorporating Mathematical Knowledge into an Automatic Theorem Proving

System.

J. Munyer
Analogy as a Heuristic for Meghanical Theorem Proving.

S. Sickel
Formulas for Generating Plans.

B. Andrews and E, I, Cchen
Theorem Proving in Type Theory.

Fonrad
Weak Second Order Iogic as Data Base Language.

L. Suzman :
 Scme Issues in the Design of a Representation Language.

L. Lusk and R. A. Overbeek .
Experiments with Resolution - Based Theorem Proving Algorithms.

Fikes and G. Hendrix
A Network - Based Knowledge Representation and its Natural Deduction
System

3
£

o
C.¥Shapiro
Compiling Deduction Rules from a Semantic Network into a Set of Procedures,

Marinov : _ :
Proper Role for Resolution Theorem Provers.

H. Fishman
A Proclarative Approach to Problem Solving.

" McDexmott

Deduction in the Pejorative Sense.

., Sandewall

Predicate Calculus as a Blueprint for Programs.

'I. Clark and S. Tarnlund

A First Order Theory of Data and Programs.

oS

R. S. Bover and J. S. Mcore _
Using Iemmas in an Automatic Theorem Prover for Recursive Function

Theory. -

Z. Mamma and R, Waldinger
The Autcmatic Synthesis of Recursive Programs.

R. E. Shostak
' An Algorittm for Reasoning about Equality.

D. S. Lankford and A, M. Ballantyne

Decision Procedures for Simple Equational Theories with Permutative
Equations: Complete Sets of Permutative Reductions.

596

80 - tvg! -

Using Rewriting Rules for Connection Graphs

to Prove Theorems : - :

- . by

C. L. Chang*
and

J. R. Slagle#**

* C.'L. Chang is with the Department of Computer Science,
I3 Research Laberatory, San Jose, Calif, 95193

*¥F J, R. Slagle is with Waval Research Laboratory,
Wahington, D. C. 20375

BREPEN

.
J

§0 - WAl - 555

‘sect of

Abstract

Esseritially, a connection graph is merely a data structure for a
clouses indicating possible refutations, The graph itself
is not an inference system., To use the graph, one has to intrbducé.

operations on the graph. In this note, we shall describe a method

to obtain rewriting rules from the graph, and then to show that

these rewriting rules can be used to cenerate a refutation plan

that may correspond to a large number of linear resolution refutaticns,

' .The method is efficilent because nany redundant resolution stevs can

. '
be aoided.

NOTES

~

B o I UV P - . b e e e [P T

'HEREDIZARY LOCK —= RESOLUTICN: R
-~ A RESOLUTION REFINESENT COMBINING LOCK RESCLUTION) T
['AND THE ¥ODIL STRATEGY S T :
R David M. Sandford _._
e i L

P .Heréditary~Lock Besclution (HI-Rasolution, .or ELE) is a sound
L;ww““mand””complete_reiinement of unrestricted resolution, HL-Resolution
e COmbines the Lock Resclution strategy (LR} - _of_ _R. Boyer_ with The |

. Model Stratagy. (TMS) of D. Luckham +o_ achieve a model based

. strategy which is alnost siﬁgly connected, The main idea is that

... HLR generalizas +the notion of a clause by appending to the usuwal

e .~ literals. . {referred to . as ~standard 1literals) .eof a clause an
c_additional set of literals whibh are called the RSLi_{False,v_
T_wmmmésubstitution _List) litarals of the,_ﬁqlause;m;mwrhroughw““ﬁnia_mw%”“,§

- representational augmeptation HLR is able nct only to combine LR

_and,TﬁSfas_a.complete cembination strategy, but 1is also able to

wr e FEBOVE some inherent inefficiency of TMS, This inefficiency exists

weee. il mOSt previously kncwn model based resoluticn strategies, and its

——eo.LEMOVAL 1n HLR depends crucially on the FSL ccncepte. ...
7 HLR requires that there ba a Harbrané intsrpratation, TH,TTTTT
~ according to which truth evaluations can be made, This podel

information is specified in HLR as a function, ¥, whoss domain is

Page 2

sets of 1iteral$'in the langud&e of the clause ==t to which HLR is
____m”“_mbéihérdéplie&.”_Tﬁe.functioﬁ M has -tﬁe--ﬁéiﬁé “féaéibieﬁ"if its

argument is a set of literais such that there exists a substitution
“____h__ﬁzga¥mgzaaitaneously converts sach literal to a falsenaround literal o
o in B, Otherwiss # has the value "infeasible". A clause, C, in HLR
o nust meet the réqulreﬂent that the FSL of C is feasible with

respect to H (i.e. # applled to the FSL of C has the value

ﬁ*"*“‘"‘““ﬁ'%"e ?;S ;._b]:;") .Alw?risili Ch El I'e q 111. 1: em e "! t lS e q L'IJ. 1-.%_1“4;11 t . tOﬁ s ayin g tiw;. 3 |

clause renrasanfs only those grounﬁ ‘instances of its standard

11tété;s ior whlch all of 1ts FSL llterals Tare fgise, and that

clauses uhlch r°pre ent no ground instances can ba delsted from the

search., When formiang a resolvent in HLR, a FSL set of literals for .

the resolvent is constructed 'ﬁhiéﬁm'565§§E¥EWMSE_EiimgfwfggmﬁéiWMM“‘

-liierélé frdm-ﬁéth.ﬁérenfs, 'an& poéé{bly sche 6f -£Hé staﬁdafd

- " literals from both pérén{s'(ﬁccofﬂihg to thke rules cfrﬁtéi, The
unifier used in the resclution step is also applied to the FSL of
AWWM“NM_EEEA‘Eggglvent._ Then the resolvent is chacked for feasibility, and .

1f nof fedéible, it need not be kept in ihe gsearch space;

In _addition _tc presenting _the proof of _ soundness and

e COMPpleatenass of _HIR, we will also discuss scme notions that have

been developed in a preliminary form concerning the specification

e Modes of models fer use in theorem proving. These notions assert
——.—that the appropriate level of description ¢of a modsl involves thres=
distinct components: . .

s A set of primitive facts,

2. A translation procedure mapping statements from the -

language of the clauses into the language of the molal,

" Page 3

3. A processing algorithm which makes truth decisions

S " about the translated clauses in 1ight of the primitiva

facts, It is assumed that this prodéssing élﬁbfithm can

‘ itself be exrressed as a set of logical axioms.
“—viee. .. Bach of these thres components emnbodies . information . which

o defines the actunal model which is constructed. _ Fundamental to this

_ ... notion of a model is that the rrimitive facts and the procsssing

e @ lgorithm together constitute a logical syster in which statemants,

"h._._..for . consistency and thzoremhood. Such a . model,. as. a theoren
. pTOVing system itself, represents. the set _ of . Herhrand

v -..0f the processing algorithm are themselves satisfied. Tha

{i_._. __translation yprocedurs 1is the connecting link between the thzoren

.f;mmmn”provinq environment in the language of the clauses and the theorem

;mwm“.”proving envirenment 1n the language of the model..

Resoluticon strategies such as T4S and HLR arefiﬁrédiéated- on

1 the use of a single Herbrand interpretation as the medsl. However
a 'Hegbrand interpratation with a non-trivial structure Vié a
__ka?difficﬁlt‘ ok jsct ‘both to génerate and fo'-htiiiié"iﬁnrélaﬁsemh
© " evaluations. We will show thai the above stated view concaraing
k%v-mdmbﬁel 'specification is sufficiently' close Wforwiﬁe'éghceét of a2
Tﬁn&wwwﬁéfbfénd-iﬁterpretaticn so as to be compatabié'with-nfﬁém soundness

and compléfénessmof d'strategymsuéh'és'ﬁLR;'Eﬁf'féfwgééﬁs Eéwaféi_m“w

;i;mw;“Jorisets_of_statements} in the language of the model may be tested

... interpretations in which the primitive facts and the axiomatization

“-w-'édvéntages with respect to ease of specificatiéﬁ'éﬁd ”adépfability."”“_

PATR:

Pla'nnin‘g and Debugging in a Predicate Calculus Problem Solver
Ira P. Goldstein and Mark L. Miller

Massachusetts Insutute of Technology
Artificial Intelligence Laboratory
March 1977

PATN is a procedural probiem soivmg system which we have designed and are currently

. imnlememmg PATN accepts predlcate calcuius probiem descnpuons as mput and transformS'

these into procedures te accomphsh the specmed guals The planmng and debuggmg knowledge

embod:ed by PATN br:dges the gap between predtcate calculus as a non-deterministic

pr-ogrammihg language [Kowalski 1973] and the sgquential_,;procedures of a deterministic

programming language, thereby clarifying this distinction. ‘

~ Figure ! shows an hierarchical taxonomy of commen planning techniques. According to

.

" this taxonomy, planning begins with a choice between three methods -- identification,

- decompaosition and reformulation. By identification, we mean recagnizing the problem as one

which has previously been solved, or noticing that the current problem is a direct special case of

ofie 'which has previously been solved. By deccmﬁositian. ‘t.ve .m,ean di'viding the ci:rrcnt problem

into sub-prob]emsr which are (hopef ully).e;\sier- 0 solve. In PATN._decorﬁpogiﬁon techniques are

crganized around the standard logical upergtors thus, PATN's decomposition knowledge amounts
to a compiler for predicate calculus programs. Limitation to the initial problem representation,

however, would severely detract from the system's effectiveness. Hence, PATN introduces a third

category, reformulation techniques, for transforming a problem description into an alternative form

whose sclution is equivalent lo; or 2 least a stepping stone towards, the solution of the original

. Predicate Calculus Problem Solver 2 . Goldstein & Miller

- ; r-PRIMITIVE 7 |
[— IDENTTFY— . . A
o —_—]__'PREVIOﬁSLY DEFINED PROCEDURE -
-SET
INEAR——
- -SEQUENTIAL
- CONJUNCTION |
| _ FeecompostrION
ONLINEAR- -
~ lcomposITION :

* PLAN p— DECOMPOSE———!

- Lrounp

o

—REPETITION—t _
L RECURSION

_kREGROUP-

R QUTVALENCE—

:

“GENERICGQEKPLICIT_

' [SPECIALIZE ‘ o e
—SIMPLIFY. | o o arIgE : , S
LANALQGY

- REFORMULATE-

i
-

FIGURE 1
TAXONOMY OF PLANNING CONCEPTS

A i
Clind,

b
§
A

Predicate Calculus Problem Solver 3 . - - Goldstein & Miller

‘problem.

These definitions are formahzed by representing them in an augmented transition

_network [Wocds 1970]. Possible planning decisions are modelled as transitions bptwer'n nodes of

e

the network. The semantic context, including the prob[em description, is defined using the ATN's

"rqgiste_.-rs. Pragmatic knowledge, specifyihg which planning strategies to apply in which situations,

is modelled by arc transition constraints, Figdre 2 provides a global view of the PATN 'probiem
solver defined in this fashion, s'howing' the connections between. the various planning states.

The followmg augmentatlons are inveolved in converting the planning taxonomy to

. procedural form: - e

(1) Registers: Several registers are introcuced ta carry the semantics of the problem
solving process. This includes the predicate logic specifications for the
procedure currently being constructed (Modet), and the currently proposed
sequential solution (S).

(2) Arc Ordering: The arcs emanating from each node {representing alternative
planning decisions) are ordered, thereby defining a backtracking algorithm.
" The default ordering from a given node is clockwise, beginning at the entrance
point of the incoming arc. This ordering embodies prior judgments about the
refative simplicity and probability of success of alternative planning methods.

{3) Arc Predicates: The basic arc ordering is supplemented by associating
conditions {predicates) with arcs. In the ATN formalism, arc predicates are’
employed to determine the legality of a fransition. By examining the contents .
of the registers, these arc predicates can make planning choices more sensitive

" . to the problem context.

i (4} Arc Actions: The contents of the registers may be modified. by actions

: ~ associated with various arcs. The actions are performed if ard only if the arc
is followed. !

(-5)'Lineari'zaiian Cycle: Interactions between instances of predicates can cause maive
interpretations of predicate calculus formulae as programs to fail. As a result.
of carefully examining this difficulty, a linearization cycle has been introduced
into PATN. If the linearization cycle is followed, the M register, containing
the predicate logic probtem description, is altered ta reflect a non-linear
decomposnwn e e s

.(6) Refinement Loop: A sequential refinement loop is introduced, which selects a
_ solution arder for subgoals and recursively solves for them.

. r

. W AILIGTT JLomsUE 9yl .
UT PURO3Z UOTIN[OS 9Y43 UINIOY,, - () ALBIqIT+g
N vt oD TR0dgns sNUTW S1ULIUGD - - .
g2u211n0 S37 03 s7e0% ao3sTdox 295 ~51R09 180y ., sTeOH
B C : 1SUOTIIY o] Jduexy :

© Goldstein & Miller

44 1UDLOTO 9TI0u0E © s pajues

D o e A S s

NEVE 4O MUTA TVHOTD Y ~ ¢ AUOOIA

() PIBTMIIO0FOY .4 [y

- -oxdax uwotidizassp watqoad oyl sy, - {W) 21aouog
néAIBIGIT 20MsUT 2yl utr Suryldue .

)

(%)

NYTd

Atexqr 3

.Su

4q poydaeu uoridrassop watgoad sg,, - thksﬁq AArll ddy .
1su0T3Tpuo) orduwexy .o C _
S _ : (W) o1a8URYy
sTeodqns 30 105 Juexany~STEOD 1239738y T _
(uotgearaop uvrd) uorjnros aLInNg ~ ¢ xaisidoy
uoT3draosep warqoad 21807 23BITPaLy - W J03sTIoy (z
1853918180y ordwexy
= odg 4
(W) uepuadepug _
TTh (W) 3rorTdxg
- _ : .
o d0d |.= STBOD | 5ag : NIT LNOD fr _=.*‘
..ﬂm) + OFES T . . N (L) , . V)
g ¢ > .
)
i
L
O
a | . : _ uotyoeLe3u = OIN (W) ozTavour
o (D+4) OATOS> (D) bus dooT (W) suoramsaaur (xy W OERITOT > W
S @ STEOD 382Y% 4 sTwOH
28 S1IB0D 38373 4 sSTwoy | ONIWANIIRY .
s -
©k
@ E] .
3 (@7 I A
o g (1) AT82q TG
g g rllltlllilﬂll.vlt .
N F
AN

R R T B R S A R e s e o S B s e
Vi . o : -

.

19PO} +ji

et e e e LA B st

Predicate Calculus Problem Solver . 5 o ’ 7 Goldstein & Miller

The puossibility of [c;jtiorzal errors makes déb_ugging an important part-of the theory.
Rational errors are defined as mistakes dn planhi;tg .that arise from the use of _reésonable :
heuristigs. An example of a fatior'xai error is failure to recognize-a particular intéractiérﬁ _bef@een
predica;;-:s due torinsuf_ficie’nt' fcnow!edge of the domain. This is devé]oped by designing DAPR

(an acronym for Debugger of Annotated PRbgmm), a debugging module for use with PATN. In

DAPR terms, diagnesis is the isolation of incorrect or incomplete transitions made between ATN

_states during the planning process. Repair cansists .of re-p!anning -guided by advice from the

' dlagnosis A descrlpncm of baslc bug types in terms of spec1f1c errors in the plannmg process is

' _ undertaken DAPR dlagnoses and repairs arnatated programs, in that a record of PATN's

;
Y

p}anning dec:smns (the derivation tree)'ls expgcted to be associated with the code.

| 'E;xamples of the PATN approach will be drawn from two benchmark Al domains: - the

_ blocks world and the Logd turtle world. Blocks world problem solvers include SHRDLU

[Wmograd 1972), BUILD [Fahiman 1974), HACKER {Sussman 197‘%] and NOAH [Sacerdou 1975].
Hence, applymg PATN to the blocks world prov:des a common set of prcbIems for comparlson-~

The- virtues of the Logo graphics_world [Papert 197i] are: (a) graphics is an environmerit in which

multiple problem desc’ript_ibns are possible, ranging fromEuclidean -geometry to Cartesian
geometry; (b) the possible programs range over a wide spectrum of complexity; and {c) extensive

- documentation exists on human perf ormance in this area [G. Goldstein 197%; Okumura 1973]

Refaerences

Fahlman, Scott, "A Planning Syst'em for Robot Construction TasI;s." in Artificial ,lntdiigmce, vol.
5, 1974, pp. 1-49.

_Gotdstein, Gerrianne, LOGO Chz:ses Commentary, Massachusetts Institute of Technology, Art:ﬁc:a!

- Intelligence Laboratory, LOGO Working Paper 5, February 1973

e,

‘Predicate Calculus Problem Sol_\fgrr - 5 o o " Goldstein & Miller

- Kowalski, Robert, Predicate Logic as a Programming Language, University of -Edinburgh. _

Department of Computational Logic, Schoo® of Artificial Inteliigence, Memo 70, 1973,

QOkumura, K., LOGO Classes Commentary, Massachusetts Institute of Technology,‘Artificié_l
Intelligence Laboratory, LOGO Working Paper 6, February 1973, ' .

~Papert, Seymour A, Teacﬁing Children T hinking, Massachusetts Institute of Technolog-y. Artificial

Intelligence Laboratory, Memo 247 (LOGO Memo 2), 1971,

VSacerdoti.' Earl, "The Nonlinear Nature of Plans,” in Advance Papers of the Fourth International

.. Joint Conference on Artificial Intelligence, Thilisi, Georgia, USSR, September 1975, pp. 206-218.

) Sussh"lan, Gerald _]a)f,_ A Computational Model of Skill Acquisition, New York, American Elsevier,

1975; and Massachusetts Institute of Technology, Artificial Intelligence Laboratory, Technical
Report 297, 1973. ‘ - _ :

"AWl'nog'rad. Terry, Understanding Natural Ldngz.;age_, New York, Academic Press, 1972.

" Woods, Wiltiam A., "Transition Network Grammars for Natura} Language Analysis,” 7

, Commwiications_qf the ACM, Vol. 13, Ne. 1, October, 1970, pp. H91-606.

.

e —

Some Thouchts on Resolutlon and Natural Deductlon

Malcolm C. Harrlson, ‘Courant Instltute, NYU. o »

' Rorman Rubln, Penn State Unlver51tv

It has been ﬂlear for some time that in any comparlson
between different metnods of dednctlon,~resolutlon would suffer .
because of 1ts 1neftlclent treatment of.the equality property. B
In a recent paper (1) we reported a new method for 1ncorporat1ng
equallty inte resolution, called equallty generallzed resolution
(e-g-resolutlon). which appears to be substantlally more '
efficient than others which have been_reported. It was shown
thatifor Horn sets e—gkresolution was complete, and that'the
] equality axions and any subset of the positive equality unit
- clauses eould essestially be absorbed into the uhificatioﬁ

procedure. An implementation of e-g-resolution called coercion

has been implemented in a system called DILEMMA (2}, together
with evaluatable predicates and functions, heuristic guidance

functioﬁs, and a ﬁechﬂique for facilitating inferences called

‘completions. Experiﬁents with DILEMMA suggest that these
 faci1ities combine to give a much more powerful deduetive -

B system'thah can be obtained by standard resolution.. DILEMMA 3@
" has solved the missionaries and cannibals problem, for esample, o ?
‘ deriving a solution equivalent to a resolution p:oef of 93

steps, and has also solved the geometry problems first proved

by Gelernter, (3) and subsequently by Nevins (4) - a procedure?

approach by Goldstein (5) was less successful. The geometry

problems were solved without the aid of a diagram, and w1thout

-a speC1allzed construction mechnism; constructions were done

" by the unification procedure using an 'intersection' function.

The rééﬁlﬁs-oﬁtéined with ﬁILEMMA have‘reihfdrced our
view that it is premature to dismiss resolution-based systems
as. being 1nherently inferior to othex systens, and in partlcular
to so-called ‘natural deduction' systems. Natural deduction
is a vague term which seems to be used to describe a number
of deductive programs which appear to. have inAcommon the
' obieétive of;producing proofs which are similar to those produce&
by humans. These programs are usually more complex and more
specialized thap fesolution programs, and are considerably more
difficult to anélyze. It is our view that the main distinction
_between the two approaches is in fact this latter property;
resolutlon enthusmasts wish to be able to make definite state-
ments about the theoretical power of their system, which natural
deduction enthusiasts are more concerned with effectiveness.
ﬁe_think that in a field so prone to overstatement it is important
to be able to make precise statements about the range of
problems,whicﬁ'can bé solved by a system, even if these state-
~ments are—only-cbrrect in theory, and to carry out comparative
.experiments when problems are potentially solvéble by more than

one programn.

Recehtly we have béen looking at the in?eresting results
obtained by the natural dedﬁction program of Nevins (6).
This program used iz.rules‘of'inference to refute a formula;
of these, 7 éré COnCefned with Boolean transfdrmatipns, 3 are
_rrelated to modus ponens, énd 2 aie concerned with equality.
The unificafion procedure uses spepié}ized technigques for

dealing with associativity and commutativity.

JIf ié our - impression that the'rather'impreséive results obtained
by.tﬁis:program are-mainly due to twb factors:'(l) a relatively -
efficient but somewhat ad hoc treatment of équality; {2) the
ﬁse of a considerable rumber of heuristics to cut down the.size

of the search space. We discuss these briefly below.

The treatment ofrequality in Nevin's program is not easy
!fo_chéracterize precisely. I£ pérmits substitutions of'equalr
terms with a preferénce for simplifying substitutions and with
a:Built-in fécognitiqn of associatiﬁity and commutativity. and -
_also.permité'a restriétéd form,éf non—equality inférence from -
almost complementary literéls. While this seems effective,
it appears to have .the same disadvantage as para-modulation--
namely that éubstitutions seem to be made without regard for
‘whether.the Iesﬁlti#g literal will be useful. For this reason
we suspect that e—g—resolutioﬁ could prqvidara superior treat-
ment of general equality, though not as éfficient for associativityr

and commutativity.

‘The heufistics uged by Nevin's program include a strategy
somewhat similar to unit preference in resolution, the preference
of simplifying substitutions, and the distindtioﬁ between
x2y and the formally identical —xvy in making inferences,
as well as othef heuristics not described as easily. As we -
seé it, the success of Nevin's program emphasizes once again_

‘the importance of carefully aesigned heuristics; ﬁowever, wa
~do not think that these heuristics are necessarily associated
with natural deduction itself; it seems likely that similar

‘effects could also be obtained in a resolution program.

.Tﬁe main £heoretical advantaée-of natural deduction is

- that thé resulting éroof is not réstricted to a sequence qﬁ
clausés, but may contain-formulae which are equivalent sets

of clauses. Thus a naturai deduction proof can be shorter.
However, in practice it is not clear that the optimum use

cah be made of this ability. Nevin's program uses splitting’
intéfcases to reduce complex formulae to single literals; a
refutation of XVY, =X, ¥, for example, where x and y are not
literals, would not be done in 3 steps. In fact the main
advantage taken 6f the more general-ciass of formulae permitted
in Nevin's program appears to be that ?he occurrences of an
‘éxisténtial ﬁariable are not treated asg independent in descendent
clanses; this effect could be obtained in resolution by adding
" an instantiation of each élause containing a Skolem function 3
Whenever_a‘substitution is made inside that Skolem function,
‘and arranging the heuristics 50 that these clauses were .

considered before the non-instantiated clauses.

A comparative study is being made by Aizik Leibovitch of
the performance of Nevin's program and that of DILEMMA. We

hope to be able to report on some of the resulté at the conference.

'REFERENCES

- {1) 'M.C. Harrison and N. Rubin, "A Generalization of
~Resolution"”, to be published in JACM,

'.(2) N. Rubin, "A Hierarchical Technique for Méchaniéal
Theorem Proving and its Application to Programming Language
Design"“, Courant Computer Science Report #10, November 76.

(3) H. Gelernter, "Realization of a Geometry Theorem Proving
- Machine", in "Computers and Though", ed. by E. Feigenbaum and
J. Feldman,'McGraw—Hill, 19%63.

{4) " A. Neﬁins, “Plane Geometry Theorem Proving Using Forward
Chaining”, Art. Int. Spring 1975. :

: 15) .I. Goldstein, "Elementary Geometry TheQrem Proving",
MIT AI Memo 280, April 73. S - - ,

(6). A. Nevins, "A Human Oriented Logic for Automatic Theorem"‘
Proving", JACM October 1974. : A

NOTES

ATP 33
February 1977

" A Maximal Method for Set Variables in Automatic Theorem Proving

1

W.W. Bledsoe

ABSTRACT. A procedure is described which gives values to set variables in automatic
theorem proving. The'reéult is that a theorem is thereby reduced to first order
logic, which is often much easier to prove. This procedure handles a part of higher
order logic, a small ﬁut important part. It is not as general as the methods of
Huet, Andrews, Pietrzykowski, and Haynes and Henschep, but it seems to be much faster -
when it aﬁélies. It is more iﬁ the spirit of J.L. Darlington;s FJMatching. Thié
procédure is n;t domain spécific- results have been obtalned in intermediate analys1

(the 1ntermed1ate value theorem}, topology, logic, and’ program verification (finding

internal assertions). : - ‘ : i
o

- This method is a "maximal method" in that a largest (or maximal) set is usually

produced if there is one.

A preliminary version has been programmed for the computer and run to prove

several theorems. Some completeness results are given.

NOTES

1. Introduction

A THEOREM PROVER FOR ELEMENTARY SET THEORY
by F.M. Brown

EFrerds Eeprorin

This is a report of some of our research carried out during the

rsuhmer and fall of 1974, It describes an implementation of a throrem

prover based on truth value preserving transfdrmations which has been

applied to proving theorems in the domain of elementary set theory,
specifically in the set theory system develcped by Quine in his book:

Set Theory and its Logic.

Our theorem prover consists of an interpreter for mathematical
symbols, and many items of mathematical knowledge. We begin by

describing this interpreter, and its basic method of evaluation by

need. After this, we then describe the items of our sequent calculus,

and in particular the various rationals behind each of cur restrictions
and strategies such as:
| The forcing restriction (Bledsoe) :

The forcing strategy N

The variable restriction .

After describing the logical systems, we then describe the set
theoretic knowledge used by this theorem prover, in particular the
axioms, reduction lemmas, existence lemmas, and definitions. We
then give two example:protocols of tha theorem provers éttempt to
prove some theorems. The two examples are a Qeneralization of
Cantor's Theorem (the 17th formulae in Chapter 28 of Quine's book and

the following theorem:

* Example 1

THS10l The Cartesian product of two abstracts is contained in the

powerset of the powerset ofrtheir union. -
+ aXj ¢ pp (o U B)
+ ¥x xeaX3 2 xe PP(a .L/ 8}
+ ¢c-eaxB 2 ce PP{a v 8)
¢ caxf + ce PP{a U B)
ce{<xy>: xea A yek?a} + ce PP{a v B)
' ce{u:3x3§ u=<xy> A Xeo A yeB} + cc PP{x v B)
‘ Ixdy c=<xy> A xea A yeB =+ ce PP{a v B)
Jy c=<ay> A aea A ye3 -+ ce PP(a U B)
c=<ab> A aego A bef - -cE:V.PP.(a Vv B)
cu<ab>) as& A pef + ce PP{a B)
aea A bed + <ab> e PP{a V B)
aca, bep -+ <ab> ¢ PP{a L 8)
"aca, bed + <ab> ¢ {uwincPla v B)
) 'aeu, bef =+ <ab> € P{a V B)
aca, bef * Vx xe<ab> O xeP (o U g)
aca, bep + de<ap> D dep (o v | 8)
aea, bef, de<ab> * deP{a L B8)
aco, bef, de{{a}{abl}} > dePla V B8)
aea; beB, de{u:u.={a}‘v u={ab}} - deP({a L B)
aco, bed, dﬂfa}v d = {ab} + dep(a U B)

v

TiQ2P2

1 + VY
s >
iQ9P1l
1Q9P4

1 02P1

‘=3+

13 -

tA
:l= =, E2]}*
A

1Dl

":[g2pl, E21*

1Q2pP2
> ¥V
D

1Q9PL

‘ _1Q7P1B -

:1Q2P1

:D1

L

, aca, beB,‘ d={a}va={ab} + de{u: uSaua} .. 102Pl :
N , acd, beB, d={alva={ad} + aSaip LroaQ2p2]
aeq; bep, d={a}va={ab} -*- V#xsd:xeaus o P
aca, bep, d={alvd={abY + ecd > ‘eca Ul : P
aca, beB, dé:{a}vam{ab}',- ecd - éaaua - ;92154.
.- - 'aea; bes, défa}Vc'a?-{ab}‘,' ecd + ec{x: xeaVxed) 1Q2P1
__,' " aea, beB, qﬁ{a}vdéfab}, ecd - ecaVeel - 1+ vV ;
' aea, bef, d-{'a}vaé{ab}, ecd eca, ecf Vo

3

. aea, beB, -a={a},ecd -:.eeo:., esh s[>, Q72120 % ,
aco, beB, ee{al + eca, ech . ig7Pla ‘ Lo L
aca, beB, eelx: x=al + eca, ecl sQ271 I
. l"'-..rj " aca, beB, e=a + eca, ecd
aca, bep =+ aca, acl
u .
| " agu, beB, d={abl}, e‘gd + ect, elas ila *,Q?Pl33*
aca, bep, ec{ab} + ee_'a, eef . :Q7P1B ' .
aca, bep, ec{x: x=aV x=b} + ecu, ee'B --=Q2?l ‘
| acd, bef,; e=a Ve-b -+ ecu, ecf | s Vo
' :
tacd,-bef, e=a v+ ect, @cf : = -
, .] éea, bep -+ aea, acd © satom '
o :'.g. | ; d |
' ‘;Jﬁ:;, 22 .--f:’v ' - .' v
) . - © atG, hEd, ovb -fr. ecd, ecd ju >
-) . : ” S a6, 2e8 .~ beoy, b&:Sn -latom'
' ' * . Y “. . I
- o) . '
" tine = 626 millisec SR o L

NOTES

. Incorporating Mathematical Knowledge_r
“into an Automatic Theorem Proving System,
investigated for the Case of Automata
.Theory, I. o

S. Daniels, M. Livesey, Ch. Mathis,
Pﬂ Raulefs, J. Siekmann, W. Stephan,

-k E. Unvericht, G. Wrightson.

Institut fﬁr Informatik T
Universitdt Karlsruhe

D-7500 Karlsruhe 1

West .Germany

Abstract:

An overview of some of the results obtained in an automatic
theorem_proving project at University of Rarlsruhe is presen-—
ted. We concentraté on theoretical results concerning the
connection graph proof procedure and some special purpose uni-
.fication'algorithms.

Reywords: Artificial Intelligence, Automatic Theorem Proving,
) Matching Algorithms, Connsction Graph Procof Proce-
dure, T-unification. '

o~

0. Hypothesis.
-In this paper we present some of the results obtained iﬁ an
_automatic theorem proving (ATP) project at the University of

(i) ‘ '

Karlsruhe

The working hypothesis for this prcject‘is +hat ATPs have Ob-
_ tained a certain level of performance, which will not be signi-

ficantly improved by:

.{i) developing more intricate syntactically‘oriented derivation
strategies (like e.9. lock-resolution, linear-resolution ...}
nor by F_ ’

(ii) using different logics, inference rules etc.
The relative weakness as compared to human performance of cur-
rent ATP-systems is due to some extend to the lack of the rich

' mathematical‘and sxtramathematical knowledgé human mathematicians

have: in particular, xnowledge about the subject and knowledge of

how to find proofs in that subject.

Hence the object of this project is to make this knowledge ex-
plicit for the case of Automata Theory, to find appropriate re-

presentations and to find ways of how to use it.

(i) "Untersuchung zur Einbezienung mathematischen Wissens
beim Automatischen Bewelsen am Beispiel der Automaten-

theorie", DFG-Forschungsprojekt, Aktenzeichen De 238/1

NOTES -

M‘TAL GY AS A ;LU.J' TIC FOR IMECHAHTCAL TIZCREN- T.‘OVI””

(Extended Abstract)

James Curie unyer

Dept. of Info. Seci.
_Universit& of California
Santa Crus, Ca. 95064

It is afvued that humsn intelliﬂeﬁce involves the use of
non- loglcol Oor noen-rigorous wethodo even in a rigorous task
such as proving a theorem. The use of analogy in mechanical
theorem proving is studied in this light. We describe an
imblementation which hés a store of previbusly proved theorems
and their proofs; when given a new theorem to be provel, it can
find an analogy mépping from a previoﬁsly.provéd theorem to the
new theorem. and use the analogy to uchleve an often dramatic
reduction in the computation requlred to construét a2 nroof,

The generation of analogy mappings is actually falrlv
straightforward. 3y observing the close relstion between analogy
and. induction, analogy meppings can be efficienuiy generated
using existing induction (meneralization) methods, IF fofmula
I is = common induet of formulas A and B, with substitutions
& and 16 such that ITa=A_and Ifj=}3, then an analogy mapping .
from A to B ig 5&‘41% . (Tt is possibie to ing sure that «& ig
'infertible by -digstinguiching different occurrencaes of the sane
Symbol in the formulas.) This can be done ag simply as |

unification opsration, and hence looking for an analogy doen not

place a significant overheaé on the system. -
Using an analogy in a deduction is a more difficult probvlemn,

because of fhe inherent non-rigorous nature of analoéy;

Specifically, problems arige when an analogy mapping changes'

during @ deduétioﬁ or when the anzlozy is not applicadble at

evéry atep. These are. characterlutlcﬂ of Mweal analogles" which

are neverthelemn used routlnely in human reasoning. Two previously _

studied methods of using analogies are discussed: using analog

to generate a plan or outline for a proof, and using analogy to.

choose a set of axioms from which a proof ig attempted. The

fifst,method can rotentially échieve an exponential reduction

in computation, and can use anzlogies which are not applicable

at every step of a proof. iHowever, it cannot he used when the

bods

analogy changes hecauge it is not possible in general to predict

how the anslogy will change, although some specisl casss are
shown in which it is possible to do this. The second method can
potentislly achieve only a polynomial reduction in computafion,
and it cannot use.an énalbgy which is not applicable at every
step of a proof because it will not 1qclude an axiom used at a
step where the analogy does not applv.

In our implementation analogies are used 3s a heuristic to
gu1de a proof. Pasically, when an "1nterest1nﬁ" analo"J mnan pi -

2

is detectad hetween s clause generated while attempting to prove

a theorem and 2_clausz in the wroof of a previously proved theor)

then a fevorable neurlutlc evaluation is g:vcn to the newly

‘generated clause. Some simple but-effecﬁive methods are shown

for deciding ﬁhen an BnBlO"J mapping ig "interestinsg". This
can achieve the same exponential reduction in computation as
when analogy is vsed to generate a plan, dbut it hag the advantage
that it is not necessary'tb predict ‘the internediate steps in
advance, 28 in @ plan, so that it cen use anaslories which chanre.
Another adventage of this method is that an analogy can
guide the proof‘through "loops" in the deduction; that is, cases
where 8 group of steps in a previously proved theorem are
repeéted seferal times in the rroof of a new theorem, usuaily
accompanied ny a change in the analogy_mapﬁing. A gimple
example 1q the evaluation of by by enalogy with 2!; zn apalogv
actdglly applies at cvery step even though 41 reguires 16 steps
and 2! only 10'Sfeﬁs.
several sxamrles are shown of the uge o onalogy in sveluating
sums, démonstrating all the faztures discu?scd The evaluation

Iy

R 1,
1 can provide an analogy for evaluating i
0 .

O .

of for any Ik,

T
e

which thus reguires computational effort only linear in Xk

n o
. cov s . .
instead of exponential in %. The evaluation of 2 b~ can
i=0

similarly he uzed to evaluate 2;1.b for any :; it can also
J'_ .

"
be used to guidz the ﬁvaluatioﬂ of 2? (ZLI?)b reducing the

conruuatwonal offort to the cuhe root of what would be required

wwtnout an analoﬁv

NOTES

PRSP

Table 2:

14

. En_glish translation .

4 the abstract of allx such that T
is‘coﬁtained in
‘union
intersection
equals
null set
universe
‘the éet'{xgrx} is ing
unit set
apéir set

ordered pair

{<xy>: . Txy} = {u:ixdy u=<xy> A TDxy} .abstract of ordered pairs

relational part
cartesian product

image -

. o N . i
Func o ++ (VxVyVz <xz>ea A <yz>eca + =y} A a=a is a function

Definitions'

yame Definition

Q2PLs vy ve{xiTx} ++'Py

Q2P2:. aS B ++ ¥x xca + xef

Q2P4; aVE = {x:xea V xeB}

Q2P5;: anB = {x: xea N xeB} .
_‘QZP7= ol o Yy xea +*_ch

Qﬁpsz @ = {z: n} |

Q2P9: . - V = {z; &}

Q5P5: “{x:Tx}ef = 3y v= {x:Tx} ;\ yeB

Q?Pla; "{a} = {z: z=a}

Q7P1B: {aB} = fz: £=a Y z=R}

Q9PL: <ap> = {{a}a8}}

QOP4:

QOP6: a f'{<xy>: <xy>ecl}

QOP1l: oxB = {<xy>: xea A yeB}
($P14s a"B = {x:3y <xy>ea A yeB}

QlOPi:

QloPili - ofB = q'y<y3>ea

Di: Pa = {u: ucal}

QLIPl: o € B <+ 3F Funcd A GSF"B

-Q20P3: o < B <+ NBSo

apply
" powerset
_The cardinality 6f a is less tha

or equal to the'cardenaiity of &

The cardinality of o is less ___
than the cardinality of 3

15

Table 3: Reduction Lemmas:
Q6P4z L amg e W '
Q7P7: vxVy {x} = {y} < x=y : o -
-Q7P8BA: ﬁx vy vz {xy} » {2} <> x=2 A y=z .
Q7P8B;' vx vy vz {z} = {xy} < z=x A z=y
Q799 ¥x Vy Vu Vv {xy} = {uv} =+ (x=u N y=v} V (x=v A\ y;u)
Q9P3= VE Vy <xy> = <uv> <> x;u A y=v
QIP51 Vx Vy <xy> e'{<uy>=¢pv} “r gXY
CRIL1: Func # + (Swy>ef ~ w=f'y)
Table 4; Existence axioms and axiom of extengionality
-Q7PLOA: @dev |
: Q7P10B: Vx Vy {xylev ’
Q4PL; Vx Vy-Vz (x=y A x€z.> yez) .
Table 5: Existence Lemmas:
Q7P12; {a}ev
QP13 {aBlev B ,
EZs | ! .

<aB>eV

Formulas for Generating Plans

' Sharon Sickel
Information Sciences

University,of California

Santa Cruz,

California

It has been shown that any problem expressible as a theorem
in the predicate.caléulus ¢an be represented by a context-free
attribute grammar such that the language of the grammar represents
the plans that solve the problem.* A.closed form for the language
is often derivable; the ngtation for the closed form is a regular
algebra -- an extension of regular expressions._ Formal language -
theory éa@ be used to‘simblify the grammar and thg éérre5ponding
language. ;

Theorem proving has been used in the past for gquestion
answering and to generate or verify solutions to specific {ground
" case) problems. Here-we generaté algorithms. For example, solve
factorial (n) (rathér thaﬁ'factorial(ﬁ)), or answer subset(S,T)
(rathar than subset({l, 2},{?, 1, é, 55)). The closed form

derivable from the grammar mentioned above gives the control

e et i 8 N e ek e e,

*Formal Grammars as Models of Logic Dérivations, Sharon Sickel,

submitted to IJCAI 77.

‘that the range conéists of a single element. Therefore the algo- S

form that will accomplish the task, and we choose among them. in
this way we avoid the complexity of having to describe all solutions,
and instead choose one that lends itself to executién. The data
manipulation of the steps of the algorithm is given byrthe'unifi—
cation of gémponents of the problem specification. Specifically,
assignment statements in the algorithm assign values to the variables =
that correspond to values the variables are unified with iﬁ the
specification.

The closed form aléo proﬁides information about certain

properties of the algorithm. The domain and range of the task

are derivable from the closed form by replacing terminal symbols

by substitutions and performing an operation on them similiar
to composition. The closed form may also describe how to
compute recursively defined functions iteratively by determining

a priori when loops will terminate and by discovering an upper

bound on the amount of lnformatlon requlred at any one time. The

original spe01f1catlon may 1nherently lmp;y an algorithm contalnlng
redundancles. We may be able to automatically improve such algo-

rithms. For example, if the zero function is described recursively, =

the implied computation is inefficient. However our analysis shows

rithm for the fpnction can be transformed to one that maps directly
onto the single range element. Another example of this simpli-
fication occurs in generating plans fof travel on a Manhattan

gri& with no barriérs. To go frém point (6,0) to point (m,n},

we could do an arbitrarily large amount of meandering. However,

it is possible to derive a plan that will accomplish the.trip
in min éteps by using a less general closed form that nevertheless
achieves the task for all m and n. | _ -

‘Some problems may be so hard that finding the closed forms
directly from the grammar is-not practical(or even possible) .
In these cases, we may be able to-induce a general plan by solving
the problem for a small set of elements of the domain and genefal—
izing on those solutions. The generalization is guessed from the
examples and must then be verified for the entire domain, usually
by mathematical induction on ﬁhe construction operator of the
domain. If the domain is finite or recursively defined, this.
proof should be éutomatic.

The closed form used heré provides an interface between formal
'5pecification of problems and the algorithms that solve them. The
automatic géneration 0f these forms is a stgp toward mechanized

plan formation. 7 "_" .

NOTES

THHdREM PROVING Ity TYPE THEORY |
Peter B Andrews and £ve Longini Cohen
st.‘&azthemalicé Depar.tnf-mnt | N
Carnegie-Mallon University
Pittsburgh, Pennsylvania 15213

As one aspect of the endeavor to create new intellecual ‘tools ior.mankin'd,-'.we'
wish' ,t-c enable computers to prove, and to assis_t in the proofs of, theorems of
- mathematics and {eventually) other disciplines which h_avel échieved thé rEr.;LIJlisite--
logical precis.ion. For this purpose, a particularly suitablé formal language is Cht-m_:h‘is'l
formutation [4] of type theory with)\--'.conver-sion. In _this language tfadit.i;)nai
r_naiheméticéf notaﬁons can be expressed very directly, and the intuitive _diétinctions '
between differént types of. mat'hema'ﬁca! entities (sueh as ﬁumbers, functions, and sets -
of functions} are made syntactically explicil, S o .' S

The progrém for proving theorems of type thet‘).rs-f.which \Ae discuss is intended to
provide exﬁcsrierwce relevant to such a project, and was developed wiih_'the aid- of
Charies E. Blair and John J Grefenstette. |
- The user first typés into the computer the senténce of type if_leor);f which is to be
proved, using the ugual notations and abbreviations of symbolic fogic. {O¢ course,
: m.a'ny' mathematical statements can be exp-ressecl ﬁxuci1 more easily and nat’uraﬁ!ly in
type theory tha‘n in f_irst orc_fer logic.) The types of variables need be_r mentioned only
once. Many tradifioﬁai méthe‘matical-nutaﬁons can be used, since tite system contains

- definitions of concepts such as equality, uniqueness, union, intersection, power set,

-image (of a set under a function), iteration, injection, associativity, group, and

"This resonrch was supporied hy NSF Granle DCR71-01953-A04 and MC576--0608i ‘

“Theoret Proving in Type Theory - o 2

tooo!ogica! opace. Additional definitions, which may contain typ‘e- vari_aoler., can readily
be added, ‘

e = Ya] is. regarded as an abbrewahon for [Qmaxa\{a], where the equality
relation Qa;m is defmed to be [AxarvaV¥poa. pmxm:paaya] Smce equa!fty can be-
defmed in type theory, no special axioms or rules of mference for equahty arer
logically necessary, though they may prove useful,

The negahon of the senfence to be proved is reduced to a set of clauses as in

[1], essenhafly as ln the resoluhoa monhod Defimtlons are mstantrated by applymg: -

IR rules of x-converﬂon The program then seeks an acceptab!e matmg [3], usmg Huei‘

algortthm [6} 10 frnd the requwed unlfymg subshtuhons -

In typv thecry untf;cahon of wffs A and B mvolve appiymg a vubshtuhon u and?

o then rules of k-corwersmn, 50 that the k-normal forms of pA and ;nB are |dt=nt1cal The
process of constructmg a untfymg sub,,htut:on may branch at each step, so the search.'.'
'for a umfymg subshtuhon is embodled in a mﬂtChlﬁg, tree [6], which may. be mflmte
The nodes of the tree are sets of palrs of wifs (dl.,agreement patrs), and all -
dl.,agreemrmt parrs in some node must be sm;ultaneously unified. We have found tha‘t
matching trees often contain nodes which are (under 'appro_priaté renaﬁwing o.f
vai-iab'fes)r superoets {or du'plicateo)r of lother nodes,. S0 our program deletes t.he
‘redundant otspersei nodes. l_-léurisiios are’ used to minimize the branohing of iho tree. .
in .e.ach branoh of the matching tree, tﬁe‘po:.siblo substitutions fo'r a variao!e are
computed onfy once, and those not immediately applied are saved. for future use.
Assoc:ated with each node N in the matching tree for the pa!r <A, B) of wifs is a
subsmuh_on M wh:ch must be composed with some other substitution to obtain a unifier

of <A,B). We say that u-is a partial unifier of (A;B), and tha! it unifies <A,B> to

Theorem Proving in Type Theory : . 3

depih k, where k is the depthA of the node N in ﬂf':e (downward) matching tree for
. <A,B>.

Befo seeking an acceptable mating, the program' findsr the potential maie:s of-.
“each literal~occurrence by doing partial unificafions, and conélruct; a copnéction graph
similar to those in [8]. It prunes the graph byr checking the horizontat consistency'
7([10]. p.28) of the parfial uniflera It also deletes any cl-ause.s containiﬁg pure I.itderals'

A poten'ﬂal matm:r (a relation between Ilteral-occurrcnces which wﬂl be an
abcep!able mating if there’ is a substitution which makes mated [itera!-occurre_ncés
compliementary} is Sﬁitt l;lp by the method outlined in [3], \;'Iifh first prioﬁty giver; 10
."fn’nr.im':r nmrates for Iltera!-c)ccurrﬁnced in the set of support, if such a set has been_
specqfied The umficg’non procedure does not wait .until a potential matlng has been
" found, but works in paraliel wi!hiihe mating procedﬁre. Each t'ime 2 new pair of wiis
~is added to a partial mating, the uénification procedu'r'_e increases the depth of ils search
for-a unifier associated with the partial maling. As the partial Vr-r.\ating grows, the
. constraints on the umfymg rub lltutmn are increased, an'cl the branching of the
matchlrm tree is reduced. Also, as ccrtam branches of the maichmg tree are ehm:mted
and other Brow longer. lhe sel of potentlal mates for each literat-occurrence is
reduced. Thus the interaction between the mating and unification procedures limits the
search space which each must explore.

" Once a potenhal mating h'\r been founti the un:flcatlon procedure seeks to verify

* that it is acceptable. Smce thw : ay involve an endless Search, the program
simulfaneously seeks new potentral mafings. - After finding an accepltable mating, for
the benefit of the user the computer constructs from it a more traditional refutation,

using substitution, cui (ground resolution), and simplification of dis sjunctions as rules of

inference.

Theorem Proving in Type Theory o B

The program can be run in automatic or interactive mode. The interactive system -
embodics a set of logical rules which i in a certain sense complete [1], but the user
must provide some of the substitutions for predicate variab!eé. (As shown in [2], even

~complefeness in this weak sense is not trivial) The program in automatic mode is not

Jdogicelly complete for type theery (though it is complele when applied to sentences of

first order Ioﬁic), since no practical method is known for automatically generating all
reqmred subshtut:ons for predlcato vambies This is the fundamental Atheoretical_
= problem of automa’nc theorem-provnw in type theory, and no practlca! gcnera[solutlon
.' to It seems :mmn;ent since sulwt;tu*:ons far pred:caie varlables of-ten express the
lmpnrtant concepts ina mathemahcai proof, I e

- As nofed in [i}, for certam purposes axioms of extensmnlahty, descrlphons, or
. rchome must be taken as hypotheses Actually, the mtroductlon of Skolem functlons to
elim!naie essenhal!y exss.enhal quantiflers nwolves-an lmphpit use of the Axion;u_of
Choice {AC) in type thec;ry,-so the system c%zn prove cértain consequeﬁéés of AC, su-ch'

A VYljzt_[Raqu‘Zs] 2 IFuVYi[RouYi[FuY (]l

Among the theorems which can be proved completely automatically .are Cantor's
Theorer:ns ﬂiat a sel has more subsets than members, _anc‘i that theré are mmé
funciions on a non-unit set than memﬁers of the g;et.r(Thus there are -gncounta-bly
Vmany functions of natural numbers.) Following {5], the Cantc;r Theorem for Sels c'an'rbe
exprésse-c{ by the senience ~IHoVSacIlifHou =So;], which asserts that there is no
tunction H from individuals to sels which has every set § in ils range.' ‘Tﬁe computer

: .decides to substitute for ::m the Wi [AXp~HokiX], which denotes the set {xlx sz},

and express es “he key idea in the clas ssical dlagOnal argument o _' .

i

Theorem Proving in Type Theory _ 5

REFERENCES

(1} Peter B. Andrews, "Resolulion in Type Theory™, Journal of Symbolic Logic 36
(1871), 414-432,

[2] Peter B. Andriws,. "Resolution and the Consistency. of Ana.yqr.. , Notre Dame
Jour ndl of Format Logie XV (1974}, 73-84.

[3] Peter B. Andrews, "Refutations by Mwhngs , ICEE Transactions on Compuiers C-
23 (1976), 801-807. N .

{4] Aionm Church, "A Formul,:tlon of the Simple Theory of Types", Journal of
Symbohc Log;c 5 {1940}, 56-68.

{51 Gerard P. Huet "A Mcch'tm?ahon of Type Theory", Thlrd Inlcrnahonal Jolnf
' Conference on Arhf:mal Intc!llgence, Stanford California, August 1973, 139~146,

[6} C‘e: ard P. Huet, "A Unification Algorilhm for Typed k-Calculus", Theoreatical . '

Computer Sctence 1 {1975), 27-57. _ . B

[7] D C. Jensen and T. Pletrzykowska, “Mcchamzmg w+Order Type Theory Through-
Umhcahon ' fheorehcal Conmputer Science (to appear). .

{8] Robe,rt Kowalski, “A Proof Procedure Us ing Connection Graphs JACM. 22_-
(197..)) 572-—595 ‘

[9] 1 A. Robrmon, "New Direclions in Mechanical Theorem Provmg", Proceedmgs of
the IFI? Congress, 1968, 206-210.

[IO} Sharon Sickel, "A Search Techmque for Clause !nlerconnechvriy Graphs", IEEE
Transactions on Computers C-25-{1976), 823-835.

April, 1977 ' - L.

-
c e

; Abstract Prepared for - o N '
* A Workshop on Automatic Deductlon . Berlin, April 13? 1977

~MIT, Cambridge, Mass. : T g‘;;::
Aug- 17-19, . 1977 ' - o S

' WEAK SECOND ORDER LOGIC AS DATA BASE LANGUAGE

E. Konrad

Technical University of Berlin

v o e

1. Introduction

ThHe purpose of this paper is to show how second order logic
can be interpreted as data base language. We consider data
j" " base systems with deductiﬁe capabilities. A paradigma of a
: data base language is introduced, called WHSOL (Weak Second
Order Loglc) The meaning of- WESOL staterents is preCLSely
defined in terms-of fixpoint semantlcs, model theoretlc se-

t mantics, and operational semantics.

Our worﬁ is partly based on Kowalkski's investigations in
predicate logic programming (/3/) and motivated by problems
_in the area of data base systems (/2/). The semantlcal found-
ations are taken from Carnap's theory of meanlng (/1/). A de-
‘etalled discussion of the author's work is presented in (/4/).

2. Déta Bases

? . ° Knowledge-based. information systems have a data base as their
.. main part. In our treatment a data base is a triple DB =
K "{K, A, F), where the kernel K contains elementary sentences,
| the amplifier A empirical rules, and the filter F semantical
integrity constraints. Syntactlcally, we have a class of atomic

+

formulas K, a class of Horn formulas A, and a class of second

formulas F.

"Retrieval and updating commands are executed by an abstract =

machine, which can be thought of as an interpreter. This ma-

‘chine must have the capakility of doing second order deductions.

A complete mechanlzatlon of second order logic is elaborated
by Pletrzykowskl (/5/) C e am e

The kernel K of the data base can be represented by a marked
dlrected graph with one semantically fictitious node. An in-~
d1v1dual constant is assigned to each node, and.a binary-or

gan unary predicate to each arc. The restrictions of a predicate

calculus to binary predicates is not essential as LBwenheim
proved in 1915. It is shown that weak second order logic is
adequate for descrlblng every portlon of the data base.

3 WESOIL,
WESOL is a precise model language whlch has the most important
features of existing (nonprocedural) data base languages. WESOL

~can be considered as an applied second order predicate calculus

with the higher order predicates TEST, FIND, ADD, DELETE and

: REPLACE The meaning of predicate variables is restricted to

predicates of. finite extension,

a) Retrleval-

".TEST (A), where A is a second order ‘formula, can have the
results /E,(YES) , O (NO), L (I DO NOT KNOW), T (I AM DISTURBED).
This is suggested by the fixpoint theory of Scott (/6/)
The result of the command FIND ((AT,...) (,\x1 -+ «X,)A)
- . 1s a matrix of predicates and. individual constants.
“ TEST statements represent YES - NO guestions, and FIND state~
ments W-questions {whe, where, what, ...}. o

- 1 -".‘_. Lol

b) Updating: _
Changing the data base can be managed by three updatlng
commands: DELETE (E), ADD (E), and REPLACE (E),_where E
is some elementary sentence in the kernel of the data base.

4, Semantics

We apply the above mentioned semantic approaches to the data
base language WESOL. The .fundamental concept *information
content of a data base" is given three different explications.
. Carnap's method of extensions and intensions is included in

our framework (/1/).
"Explication 1 (fixpoint semantics):

The information content of a data base is the minimal fixpoiht

of its state space.
Explication 2 (model-theoretic semantics):

The -information content of a data base is the class of con-

sequences of its kernei,
Explication 3 (operational semantics):

The information content of a data base is the class of deriv-

ations of its kernel.

Explication‘j and explication 2 are equivaient, if the ampli-
fier of the data hase is a set of Horn clauses (kowalski 3.
Expllcatlon 2 and explication 3 are equlvalent, because the

T weak second order logic is complete. T e

The semantics of all WESOL statements can be defined with re-
-spect to the informatieon. content of the-data-base. The meaning
of individual constants and predicates .is given by the data
base. Using semantical rules the meaning of complex WESOL
statements can be determlned recursively.

References:

/1/

/2/

Carnap, R.: Meaning and Necessity, Second Editioﬁ,
Chicago Press 1956.

Date, C.J.: An Introduction to Data Base Systems;. '

-Addison-Wesley 1975. .

Y3/

2

/5/

Emden, M.H. van; Xowalksi, R.: The Semantics of Pre-
dicate Logic as Programming Language, Memo 73, Edin-
burgh i974. ' ' '
Konrad, E.: Formal Semantics of Data Base Languages
{German), Thesis, Berlin 1976.

Pietrzykowski;T.: A Complete Mechanization of Seccond

‘Order Type Theory, JACM 20 (1973}, 333-364. .

76/

-_Addreés:

Scott, D.: Lattice Theory, Data Types and Semantics, in:
Formal Semantics of Programming Languages, Prentice ‘Hall
1972, 65-106. ' '

Dr. E. Konrad o

TU Berlin .
Otto-Suhr-Allee 18/20 VSH 9

D-1000 Berlin 10

red. Rep. Germany

NOTES

Introduction

. Some Issues in the Design of & Rapresentational Lanouage

(Exteadad Abstract)
Pe L. Suzman

- Dapar{ment of Artificial Intelfigcnce

Ualversity af Edinburen

Attempts t0 use First Orﬂer Prédfcate Calculus (FOPG?' as =&

represcnfutional language nave encountererd tvo fundamental: problems

W= tne serious difficultxﬁ’ found {n a: ismati=inc rProblems and the

inability of ¢general purpo~e rroving techiniques to encompass even

what mignt be called conmon~=en¢e ‘reasaning,. _ .

It is Suggested that one af tine rundamental reasans for this

nigat be that FORC is “neutral” in that it does not embady

assuinptions about how it will be uqed 10 model problems - 1t renainsJ
entirely uncommitted about tie naturp of tﬁe ObJGCtS in the uwtuerqe

of discourse.

-Just as the idesa that sets nplay a fundamental role in

aathematics gave é_basis for & successful methematical lancuage (set

"tneory). the idea is explored here that 'some SUCh <¢oncept Tight
prove sinflierly fruitful in the design of a representational

’*=iahsuage‘for Al

On a Nominalilstic View of the World

The particular concept suscested {s that of an individual as

espoused by WNominalist pailosoprers, particularly Gondian [11 and
') X

Eberte (£21., Tne world-yiew that this entails i{s of a wvorld

rzrts (and “suns") are alsgn

03]

coﬁsist!ng of dndividuals whos
individuals, and wvhere iadividuals can enjoy certain (basic)
properties - Indeed "ars to be thowoht of as simply “hundies” af

these prdperties.

Some Semantics for a Staple Nom{nalistic Linevage

A simnple samadtics for such 2 lanewnace praposed by Eberle is
discussed. In this lanauszne, "b {s req” 1s-takeﬁ i3 be true {Ff the
denotation of L overlaps (has dametniné in comman wifn> the
denotation 'or. red. Thius Bredicates‘ Have intensions as well as
extensions - the vredicate red is to be thoueat of as denotine the

bundle which consists of all the prorerties (corresponding to

different shades of red) willeh zre nresent in =211 red thines.

Computational Advantaces

fhé computationaltadvantages of such a lahguage'over FOPGC as {t
is normally used are {llustrated by-means_or an examrle 1nvaluinq
mutually exclusive properties and nlerarchies of praperties. The
advantaces stem fron b@th‘tne intensional nature of the language,
wnich'allows one to reason aboui the nraperties of predicates, and

the richer ontology, whicn allous one to shift between 2 logfcally

.
LYy

-comﬁiex statement about several sizrle indlividuals and an equivalent

logically simple statement about the complex tndividual unieh is

taeir sum.

Other {ssues : Relations, Derived Pronertles, Sets, Vieus

The problem posed In such 2 system vhen dezline uiin relations

is discussed, and some tantative solutions nronased,.

This leads to the inmportant related issue 2f derived nronerties

whicin is discussed witih particular emnriasis an some nf the different
ways prorerties of complex objects can depend an vroperties of thelr

parts. (Compare say colour and weleit).

The need for some form of set {s shawn and a limited set theory

in conJunction with the idearqf the different “Uiewé" one ¢an have

of a complex object (e.g. Ine can rezard a chess board as consistine

2f 64 squares or of 4 ranks) is proprased.

~On Mcdelling a Changing World

Tine ease with waich a-représentatianal'language can ceoare with a

“world tiat can underon cianez is snwegested as a Fuadomental teét for

it. Indeed it {5 only 1in this rroLlew that some 5f the

pntiosoyﬁical issues {=cvssed here a&re seen to be of precticeal

faportance.

[T TR P PSR SR A IOV RS S N

kit e

The standard situatisanzl calewlus [31 turas out *an he an
éxample of the use of FOPC in. a mzaner noi c:ﬂéistent vith the warld
view suggasted nere, aﬁd an alteraztives foaraulation i35 bproposged, in
thié tite meanine of ourrprecicates ts left UnChangedras comnpared
with the static case (in contrast to the nsual }ntrbduption of
situatianai yarianle arennents), and instezd we think in terms of
individual concepts unich nmay refer +9 differeat indi{viduals 1in
different situstlions. A particulsr .situatiﬁn Is Just‘tﬁeﬁ the
totality of all iIndividuals at - some {instant. The fraae onroblem
becomes siaply that of deteraining uhich ihdividual concents stil}
refer to ine same 1nﬂ1u1duals in the new sftvation es they did in

the o;d.

On a Logic of action

Hayes’s provasals for z locic of éctiaﬂs fa] gre re~interpvreted
1a tnis context. Intuitively the rrorosed icdea {s that an actlon is
regarded as affecting precisely snme specifien ﬁroﬁerties af some
specifled Individuals. In the vrooodser svstem a &istinction ¢can he
drawn between the “cenuine” and "locicel” side~-effects of an action.
The former occurs when, g8s & result of beln¢ som=zhov physically
connected to the indiuiduéls directly affected by - the sctibn,
another inﬁivldual al so becpﬁes affected (es¢. a blnck !'s mowed
Aqéusing anotnzr Dblocek reétlnq an 1t io alsa_'move).n In¢ical side
effect ocenrs in that some derivsd rraperties of a comnound
indiuiduai change bedauée sone rrorertiss of same part of that

individual, have Dbeen changed (¢ e.<¢ 5 black is maved causing the

v
“i

')

,\

d!sﬁance between {t and some ather blocKk t9 chancae),

.

Illustrations and Comparisons

Tne use af 'such a lancuace is illarstrated Dbv means of an

example in which Tic-Tac-Toe is modelled.

Tne possible use of it as a procrammine lancuagse by regerdine

steps of the proeram as actiasns 1s contrasted with the aphroach

taken by-Kowalskl £s51.

"Finally the sueeestions here are comnhared with the 1{deas wused

in KRL [61.

Referencges

L11 Goodman,N. (1966): The Structure of Appearance (gnd ed.)

Indf{ananolis.
€21 Eberle,R. (1976) : ¥ominalistic Systems, Dordrecht-dalland.

[3) McCartiy,J. & Haves,P., (1969)50me rillosonnical oproblems. from
the standpoint .of artificial intellicence, Machine lntelligencﬁ

4yPPe 463502 (eds Meltzer,B & “icinle,P.) Edinbureh University

. Press,

FEC B

- f
(4) dayes,2.(1971): A locle of actisns., Machine Intelligence &6, »nn.
£
495-520 (eds Meltzer,B. & dichis,D.) Edinburer Universlty Press.
. _
: £5) Howalski,R. (1974) Pradicate locic as 2 praerzmanine laneunaee,
e Proc. IFIP Cong. 1974 pp. S69-574 . Narth-dolland.
E&l Bobr‘ow,'D. & Winograd,T. (1977): An overviey-gfr XRL, & Xnowledoe
' representation lanovage, Cog. Sc. I no. 1,1377.

G Wl S s

Experiments with Resolution-Based
Theorem~Proving Algorithms

by E. L. Lusk and R. A. Overbeek

During the past ten years a variety of seemingly simple problems have
proved intractable for resolution-based theorem provers. In this paper the
- authors presenf some enhancements made to an existing theorem .prover which
allowed the program to obtaim proofs for several problems in a number of
different areas which were very difficult for the original program. Most of
fhese enhancements were based upon the previously proposed concepts of locking
[2, 3], case analysis [5], bidirectional search strategies [4, 6], and

qualification [71.

The first modification to the existing program involved the introduption
‘of a bidirectional search strategy. It was found usefui to maintain the
distinction between two environments in several ways. The inference rules -
‘appropriate to one enﬁironment {roughly speaking, the environmeﬁt analogous
_to forward-chaining from the hypothesis) were quite differeﬁ; ffom those found

appropriate to the other environment {corresponding to back-chaining from

the denial of the conclusion}. The appropriate criteria for retaining and

using derlved clauses were also found to differ.

The second category of enhancements involved the partitioning of each clause
into two sets of literals, those which are to be considered “active", and
the others. Only the active literals are considered in determining whether
a clause meets given criteria for retention and use. For example, if a

"elause containing a complex term is ordinarily ‘benalized" in some way, then

it will not be penalized if the complex term is.in ar Iinactive literal,
- Similarly, any algorithm which makes use of the fact that a clause is or is

- not a uvnit clause will regard a clause with only one active literal as a unit

. clause.

" The partitioning of the literals-in é clause is accomplished as follqwa.
Lock numbérs are assigned in decreasing order to literals appearing ia ground
clauses which are derived in the context of the "back-chaining" environment.

A literal in a clause is sald to be locked if there exists in the clause a
iiteral with either a lgwer lock number or no lock number at all. A literal
‘is a qualifier if it represents a condition of definition for a function
appearing-in another literal in the clause. (See [7] for a compléte discuséion
of qualification.) Finally, a literal is active if it is neithe; locked nor a
‘qualifier, This partitioning mechanism has a dramatic effect on the behavior

of various inference rules and also leads to an implementation of case analysis.

To illustrate the usefulness of the above concepts, we will examine the
- performance of our theorem prover with the above enhancements on a set of
five problems from widely differing areas, each of which was found to be

either difficult or impossible before the enhancements were implemented.

The first of these is one of a set of problems on limits ﬁroposed by
Bledsoe [1]. The theorem is that if 11ﬁ(x+xo) flx) = I.1 and
1im (x+x°) g(x) = L, ‘then for every € > ¢ there is a § > o such that
lif]x—xoi < §, then lf(x)—L1+g(x)-Lzl<e. To the authorsi knowledge this
problem has not yet been done by any other domain-independent theorem—-

prover. Obtaining a proof of this theorem required the use of qualification -

to-coﬁe with the functions Sl(x) and .éz(x) aséociated_with_ f. and g
- which are defined onlj for x > 0, - and the use of the bidirectional search

strategy to create the set of terms necessary for the proof.

In set theory, ﬁhe problem AUB = BUA appears trivial but can pose
difficulties for resolution theorem provers because it is ndt a Horn set.
The application of bidirgctional éearching and locking occurs in the
derivation and use of the clause -—{AUB < BUA) or — (BUA < AUB),

One of the literals will be locked, so that the program will operate on the
clause as if it were a unit until the clause contalning the locked literal
_jisrderived (end of first.case).l This clause will subsume all the clauses

: used in its,derivatidﬁ,‘and the program will now proceed on the other
literal (mow.unlocked). |

The tﬁird problem,from group theory, was designed to stress_the case
anaiysis aépect of locking. Counsider two groups G1 énd G2, tﬁéi;
multiplication tables given as axioms, and an explicitly defined
.isomorphism f:G1 - G2' The problem is to prove that f(x)f(Y) = £(xy)
for all X,y 1in Gl' If Gl and G2 are 1somorphic to ZZ’ this
requires consideration of 8 cases, and in the 23 ‘case, 27 cases.

-4 further enhancement uéed in this problem was "conditional demodulation,

| in which clauses with all 1iterals inactive'except for 6ne positive equality
literal act as. demodulators within the case belng worked onn. The time
'required to do the '22 problem was decreased by a factor of 7 wheu
conditional demodulation was installed " and the 3 problem could not

- have been done without it.

The fourth problem, also in group theory, comes from a set proposed by
Nevins [5]. If K is a subgroup of a group G and g € G, then g ek
if and only if gK = K. Qualification was heavily used to restrict the use

of certain functions in contexts where they would not make sense.

The final problem is one of four verification conditions which arise
from and attempf to verify an algorithm for finding the maximuwm element of
a vector. Bidirectional search, locking, and conditional demodulation were

all utilized in obtaining the proof.

In summary, we believe that our experiments have demonstrated the value
of these ideas in significantly extending the power of resolution-based theorem

provers while retaining their generality.

.1.
- 2.
3.
| 4.
3.
6.

7.

REFERENCES

W. W. Bledsoe, R. S. Boyer, and W. H.‘Hénneman, Computer Proofs of
Limit Theorems, Artificial Intelligence 3(1972), pp 27-60.

R. S. Boyer, Locking: a restriction of resolution, Ph.D dissertation,
Univ. Texas, Austin, 1971.

C. L. Chang and RCT. Lee, Symbolic Logic and Mechanical Theorem Proving,
New York: Academic Press, 1973.

D. Xuehner, Same special pﬁrpose resolution systems, Machine Intelligence
7 (1973), pp 117-128.

A. J. Nevins, A human oriented logic for automated theorem-proving,

J.A.C.M. 21(1074) pp 606-621.

I. Pohl, Bidirectional search, Machine Intelligence 6 (1971), pp 127-140.

S. K. Winker, An evaluation of an implementation of qualified hyper-
 resolution, IEEE Transactions on Computers, vol. C-23, no. 8 (1976),

pp B35-843.

Fikes and Hendrix o DRAFT - " K-NET and SNIFFER

-

A Network Based Knowledge Representation and
its Natural Deduction System

by

Richard Fikes and Gary Hendrix

Abstract

We describe a knowledge representation sc_:heme called K-NET and a deductive retrieval -
system called. SNIFFER designed to answer queries using a K-NET knowledge base._ K-NET
uses a partitioned semantic net- to combine the expressive capabiiities. of the first-order
predicate calculus with full indexing of objects to the relationships inuw'hich _they
participate and with linkages to procedural knowledge. Facilities are also iﬁcluded for
representing taxonomies of sets and for maintain‘ing- hierarchies of contexts. - SNIFFER
contains a logically cemplete set of natural deduction facilities that do_ not require
statements to be converted into clause or prenex normal form. It uses a ce-l-'ou-tine based
control structure that constructs alternative proofs in pseudo-parallell and shares reselts
among them. In addition, it uses deductive functions that embody the semantics of -

taxonomies, and allows augmentation by user-supplied derivation functions.

Introduction

~ This paper provides an overview of a network ~based knowledge representatlon scheme-
called K-NET and a deductive retneval system catled SNIFFER desrgned to answer queries
using a K-NET knowledge bage‘ K-NET provides fac:lmes that combine the expressive power
of the first-order predicate ca!cmqs_ with a' natural indexing scheme, a pa}titioning

mechanism that allows the construction of hierarchical contexts, a taxonomy modeling

~ Fikes and Hendrix - DRAFT - K-NET and SNIFFER

capability, and- linkages to proceduréll knowledge. | Typically, the representation scheme is

used to create a model of some task domain about which questions are to be asked. SNIFFER
(an acronym for Semantic Net lnferen_.ce Facility Fortified with External Routiﬁes)
provides a mechanism for ébtaining information from such a knowledge base both by.
direct retrieval- and by déduction. Such deductivns may involve the invocation of
procedures provided by users and are achieved through the coordination of multiple

pseudo-parallel processes.

SNIFFER and K-NET are évolving systems, versions of which have been used as major
components in larger systems developed in the SRI Artificial Intelligence Center, including

the SRI Speech Understanding System (Walker 1976).

[n this paper we first present what we consider to be the distinguishing or characté_rizing
features of this system before foéusing c;\n a detailed description. Our goal is to high?ight
what we feel is interesting about what we have done, and to provide the readef wlho'ris
familiar with similar efforts a set of observations that can be used to relate our work to
other knowledge representation facilities and deductive retrieval systems. Following these
lists of characterizing features, we provide an overview description of the system that

. elaborates on these features and provides intuition building examples.

Characterizing Features of SNIFFER

SNIFFER is a “"natural” deduction system that is given two net structures as input, one
representing a knowledgé base and the other representing a query (usually a transiation of a
question stated in English). It treats the query as a pattern and attempts to find instances
of the pattern in the khow!edge base, or equivalently, it treats th_e query as a theorem to be
proved and attempts to find insténtiations for its existcu_{ia!!y Guantified variables. Answers
~are teturned in the form of sets of "bindings" for the variables in the pattern. For
' example, the question "Who does John love?” is translated into a\.‘net structure representing

the pattern "John loves x" (or the theorem (3Ix)[Loves{(John,x)]), and SNIFFER returss

‘Fikes and Hendrix DRAFT,- -~ - . K-NET and SNIFFER

i)itidings for x such-as {x, Mary). Answers may either be retrieved from the knowledge base

or ‘derived using knowledge base theorems and procedures. .
SNIFFER can be characterized by considering the following list of features:

*+ Associative retrieval of relationships from the knowledge base is performed using

the K-NET indexing facilities.

* Efficient, special purpose deductive procedures are used for extracting information
from the K-NET taxonomies. For example, if the knowledge base indicates that x is

" an element of the set of Musta;\gs, that Mustangs are a subset of the set of sports
cars, and that sports cars are a subset of the set of automobiles, _then SNIFFER can
conclude that x is an automobile b-y using procedureé that follow the chaiq of
éleme,n-t()f and subsetOf arcs, thereby bypassing the more cumbersome,

general-purpose deductive machinery.

*+ Facilities are included for answering questions and using knowledge base statements

composed of conjunctions, disjunctions, and implications, containing arbitrarily
" embedded universally and existentially. quantified variables.

* Queries-and knowledge base statements are processed in.t_he,".natural.';f fonﬁ in which
they are input, without converting into a canonical form Suf:h as clause form or
prenex normal form. This capability eliminates "explosive” conversions (such as
converting the disjunction {a AbA) V{dAeADV {gAhAi into clause
form which coﬁsists of 27 lclauses eaéh containing 3 disjun‘ct_s} and unnecessary
conversions (such as conversion.of a disjunctive question’s compléx disjuncts when
one of its simple disjuncts cﬁn easily be shown to be erue). In addition, the
intuitiveness and heuristic value of the form in \&_rhich-statements are input (as

~ implications, for example) is maintained.

* A logically complete set of natural deduction rules are used that reason backwards

" from the question. - These rules use such techniques as establishing subgoals, case

_Fikesand Hendrix =~ DRAFT - - K-NET and SNIFFER

analysis, and hypothetical reasoning. For example, to answer a question that is in
the form of an im.piicatibn, SNIFFER . might use. hypothetical reasoning by assuming
the implication's antecedent and then pursuing a proof of the consequent as a

. subgoal.

* A powerful coroutine based control structure atlows the construction of alternative
proofs in a pseudo-parallel manner, with rtesults being shared among the
alternatives. FEach partial proof has its own local scheduler to determine hdw its
proof attempt should be continued, and there is an executive scheduler that uses
information supplied by the local schedulérs to deﬁermine which partial proof is to
be given control at each step. The various schedules provider the facilities necessary

to allow reasonable heuristic guidance of the total deduction and retrieval process.

* User-supplied procedures may participate fn the attempt to find answers in two
ways. First, procedures included in the knowledge base may be 'invoke-d to access
tnformation in knowledge sources that are external to K-NET. Second, SNIFFER

- allows the inclusion of user-supplied procedures that extend the system's deductive
strategies. Facilities are available to these procedures for .creating alternative proofs,

manipulating schedules, altering priorities, and establishing "demons" so that the

usei can create strategies that augment and interact with those that already exist in

the system.

r A "gé_:nerator" control structure (see Teitelman, 1975) is used that can be restarted
after returning a answer to seek another answer to the same query. SNIFFER saves its
internal state before returning an answer,"and each time it is "pulsed”, it continues
from its previous state and seeks another answer. For example, the first pulse for
the question "Who owns a Mustang?” may produce the answer "John", a second
pulse may produce "Mary”, etc. This style of answer production allows the user. to
examine each answer as it is produced and determine whether additional answers are

needed.

Fikes and Hendrix DRAFT K-NET and SNIFFER

* "No" answers are determined by finding an affirmative answer to the question’s .
negation. For example, if given the guestion "Does John love Mary?", SNMIFFER will
attempt to prove "John does not love Mary" in addition to attempting to prove

"John loves Mary".

'+ Compiling Deduction Rules From a Semantic Network

Into a Set of Processes

. Stuart C. Shapiro
Department of Computer Science
State University of Hew York at Buffalo

Amhers@, New York 14226

Detailed Summary -

For some time, we have been lnvestlgatlng the representa-
tion of aeuuctlon rules in semantic networks [1;2;9-13].
Recently,'we flave been lmplementlng an 1nferencing system
7 whicn, given the pattern for a pie_e of network to be aeduced
locates relevant deduction rules {12}, and “compiles" them
rlnto & set of processes which are then given to a multi-pro-
cessing system for execution., The mult1-process;ng approach
was motivated partly by Kaplan's producer-consumer model of
parsing [7] and partly ny Wand's frame model of computatlon [14],
:Wnlcn itself was based on the "llttle man” metaphor of
Papert {8] and Hew;tt's ALTOR model [3;4;5].

Deauctlon rules are represented in semantlc network form
'for several reasons: they can e entered in the same way as
otner 1nformation, either in tne Same formal input language or
in (some subset of) a natural language using the same parser
:__ana grammaxr; tney can be treated as data - entered retrieved,
discussed, ete.; relevant deduction rules can be tetrieved
‘using tae Same network matching routines and in the Same
ogetation as retrieving explicit information; in semantic‘
networns it is natural to r'epresent a rule as a connectlve and -
an unoraerea set of arguments, delaylng the decision of which
argument(s, is(are) the antecedent(s) ana which are(is} the
consequent untll tie rule is to be used in a ueductlon. To
'1llustrate tne last point, consider the ru ile statlng that the
following propositions are equivalent:

o 1, 'Block X supports block y, - '

2. Block x is under block y.

3. - Block y is above block_x,.

We may write this rule symbdlically as:

VX.Y-3 1 7 (Supports(x,y), Under(x,y), Above(y,x)}

~in tne SNEPS input language [11]), this is written as:

(BUILU AVB($X $Y) 10T 3 THRESH 1

ARG((BUILD Al *¥X R SUPPORTS A2 *Y) A ,
(BUILD AT *X R UNDER A2 *Y)

(BUILD A1 *Y R ABOVE A2 *X))).

and as a semantic network, we draw it as:

- e

- If we want to deduce a node that matches M2,M3, or M4, we can

use M1
become
we can

becone

as a consequent tneorem [6], and the_other-tﬁo-hodés

antecedents. If a node matching M2,M3, or M4 is asserted,
use M1 as an antecedent theorem and the dther fwo nodes
.conseguents,

When an argument of a deduction rule is matched, processes

are createa to carry out the indicateda inference. .Some pProcesses

analyze tane deduction rule and create other processes that are

spe01allzea for using tne deduction rule 1n the proper dlrectlon,

and ‘with the proper sets of antecedents and consequents.. for
example, if noge M2 were matched during a backxard chalnlng
operation, processes would be created for using rule M1 as a
consequent tueorem with M3 and M4 as antecedents, either of
which is sufficient for deducing M2:; Once created, these
Processes can be saved so that if the same rule is needed
agsin to deduce the same consequent, the pfocesSes need not
be recreazed, Processes may be a551gned prlorltles and
resource boundsg, They may be executed in parallel (or
simulated parallel) subject to dlfferences in prlorltles.
.When a process expends its resources, it is Suspended ontilr
it is assigned additional resources, |

- Every process has a name which defines the action the
'process will perform and a continuation linh to'the process
taat is to be scheduled for actlvatlon after it has completed
1ts job. Each Process also has other "slots" or "registers”
peculiar to the-actioh it will perform. Processes pass
information-back along their continuation links by schedoling'
instances of the "messenger" process, ANS, whlch inserts ltS A
message in the MSG register of the rece1v1ng process and
then scnedules that process, 7 7 | |

: Two Kinds of processes control the use of deuuctlon rules

used in a backwaro—chalnlng (consequent) mannex, The process
USE controls tae top level of a deduction rule, while the
brocess. USE~1 controls embedded rules. Both processes have
' reglsters for tne rule (RULE), the consequent (CQ) and a

binaing of the varlables used in the rule (BNDG). For example,

fsuppbse the iule
' _'Yx,y(x-ON‘y + ¥z(y ON z + x ON z)})
were to be used to deduce answers to the question, (A o ?).
A USE érocess would be created whose registers-would‘be*
!RULE:' Vx,y{x 6N Yy * ¥z(y oW z =+ k oN z})
cQ: vi_(y ON z + x ON z))
_BNbé: ((%.3) (z.2))
Above it on a path of continuation links would be the USE-1
prxocess with registers | |
RULE: vz(y ON z » % ON z)
CQ: X ON z)
BNDG: ({x.) (2.2))
wnen the USE process receives a message informing it that (A ON B)
is valid, it wopld create.and-schedule.é speciéli;ed USE~1 pro-
cess with registers i
RULE : ¥z {(y ON =z - * ON jz')
CQ; X ON =z "

BNDG: ((x.A) (y.B) (z.2))

-

This process would attempt to answer the qﬁestion {B ON ?).

Both USE égd USE-1 processes have continuation links to
processes with the name ANS~CATCH. This process has three |
registers: MSG, DATA, and BOSSES. The contents of BOSSES is
& list of processes. Whenever AﬁS—CATCH is activated, it
--takes ité messages (from MSG), and whichever ones are not already "~
in DATA‘are added to DATA and-seﬁt to all the-BOSSES. When a

process wants to use a deduction rule.to deduce some consequent,

S . . ' ' : 5 :
© Actually the RULE and CQ registers would contain nodes, not.

symbolic expressions.,

it first checks if a USE or USE~1 process elready exists to .
use tnat rule for that consequent with a binding compatlble
with its own. If one is found, the process adds itself to
the llst of BOSSES in the ANS-CATCH above the USE or USE—1
and immediately takes all the answers in the DATA reglster of
‘the ANS-~ =CATCH, In this way, if a deductlon rule is useful in
several places in a deduction, duplicate work is avoided. In
‘the case of recursive'rules; like those for transitive '
frelations, the result is a cycle'of continuaﬁion links - an
'ANS-CATCH amonyg whose BOSQLS is a process with a path of
.continuation links to the ANS- CATCH 1tself Answers will
circulate in this cycle_of processes, mov1ng bne lihk in the
~ chain of trarsitive relations with each cycle, untll no more
answers can be produced. The ANS-CATCH process can.bef'm‘“'
V1ewed 4s a specialized data base connected to rules whieh
can be used antecedently whenever an assertlon is added to
its DATA reglster. Although these rules are pattern-directed,
they are guaranteed to match any assertien that gets added

to the ANS-CATCH,

1.

:

9.

References ' S : o SN

Becntel, R;J.'Logic for semantic networks, M.S. Thesis.
Technical Report No. 53 Computer Science Department,
Indiana University, Bloomlngton, IN., July, 1976,

Bechtel, R.J.,and Snaplro, 5.C. a loglc for semantic
networks. Technlcal Report No. 47, Computer Sc1ence

7 Department, Indiana University, Bloomlngton, in., March, 1976.

Greif, I., and Hewitt, C, Actor semantlcs of PLANNER~73,

Proc. 2nd ACM Svmp. on Principles of Programming Languages,
Palo Alto, 1975.
Hewitt, C.; Bishop, P.; and Steiger, R. A universal modular

ACTOR formalism for artificial intelligence. Proc. TJCAT 3;_'

Stanford, CA., Aug., 1973, 235-245,
Hewitt, C., et al. Adétor induction and meta~evaluation,

Proc. 1st ACM Symp., on Principles of Programming Languages,

Boston, 1973, 153-168. |

Hewitt, C.VDeécription and theoretical analysis (using
schemata) of PLANNER: a 1anguage fo; proving theorems
and manipulating models in a robot. AiferZSB. M.I.T.,
A.I. Lab., 1972. |

Kaplan, R.M. A multi-processing approach to naturai
language, Proc., NCC, 1973, 435-440.

Papert, S.A. Teaching children to be mathematjicians

. vgtsus_teacning,about mathematics, Int.;J. Math. Educ, -Sei. -
Technol. 3 (1972), 249-262.

Snapiro, S.C. The MIND System: a data structure for semantic

information proce551ng. R-SB?—PR, The Rand Corporatlon,

i

Santa Monlca, Callfornla, August, 1971

10.

11,

12,

13.

14,

'Shapiro, S.C. A net structure for semantic information - -

storage, deduction and retrieval, Proc, Second Int,

Joint Conference on Artificial Ingelligence, The British

Computer Society, London, England September, 1971,
512-523. - , e L
Shapire, S.C; An introduction to SNePS. Teehnical Repert'
. No. 31, Computer Science Department, Indiana University,
Bloomlngton, IN., Revised December, 1976. |

Shaplro, S.C. Representlng and locating deductlon rules

~in a semantic network. To be presented at the Workshop

on Pattern-Dlrectea Inference Systems, U. of Hawaii,

May 23-27, 1977. R

'Shapiro, 5.C. and Bechtel, R, J. Non-standard connectlves

. and quantifiers for questlon answering systems, in
progress. _ ' _

Wana, M. The:frame model of computation. Technical
Report No. 20, Computer Science Department, Indiana

University, Bloomington, IN;, December, 1974,

PROPER ROLE FOR RESOLUTION THEOREM PROVERS

Vesko &. Marinov.
Department of Computer Science -
Oregon State Univercity
~Corvallis, Oregon 97331

'There is a widespread belief at the present time that resolution

- cannot be very helpful in automatic thecrem proving. This is a

. consequence of the disappointing experience with previous use,

-particularly-in view of the high hopes which it had originally raised.
It is the author's cpinion that thls is an overreactlon Whlch pOSSlb v
prevents researchers from applylng resolutlon to tasks where its
'-appllcatlon is in fact approprlate. Such applleatlonsvare naturally
.'rather modest compared to what was at one time hoped for resolutlon.
-”-It is an establlshed faet now that desplte the w1de varlety of
restrletlons and strategles developed for' resolutlon ‘lt remains
,'too_weak for proving theorems of any interest in mathematics.
'Hewever; in pldces where simple but tedious logical computations
,ianlving_predicafe calculus formulas are reeded_resolution seems to
be fhe_best answer. | |
This cleim will be supported with examples drawn from the
experience‘with e system for teaching axiomatic set theory developed
at the Instltute for Mathematical Studies in the Soc1al Sc1ences |
at Stanford and used for regular course 1nstruct10n gsince the fall
of 1974. The most essential element of the system is a proof checker ‘
" based en the,logical system_of P. Suppes, used for determining the
correctness of the studentsi proofs. The most powerful end most
rfrequently used rulee of irferenee utilize a resolution.rheorem
prover.' To *he bestuof eer_know;edge tﬁis is the only reselutien

theorem prover, in fact probably the only general purpose theorem

prover, used in actual production.

.'The:ekperienee ﬁith'the'CAI syétem shiows that a welleerganized

“5resolutlon theorem prover gets most of the 1nferences seen 1ntu1t1vely

- by ‘the user whlle worklng on a proof. The user has no 1nteract10n
w1th the theorem prover except for asklng that a formula be verlfled
'aﬁd'supp1y1hg the references, which he thinks the formula follows
from. The prover is used primarily for the rules,VERIFY"and'CON—”
- TRADICTION. While using VERIFY the user has to type the line, Whose'
‘negation together with the references is-peseed.to the prover. If
' lthe pr0ver is able to conflrm.the 1nference 1t 51gnals the proof
- checker to accept the llne. For the CONTRADICTIONArule the user
_merely p01nts to the references which he belleves form an 1ncon~'
.slstency f such is detected by the prover, the proof checker
':reLurns the negatlon of the last assumption on whlch the references
depend. (Presumably there must be an incorrect assumption in order’

to reach a contradiction.)

The main reason for selectlng a resolutlon theorem prover was
-rour belief that for the same generallty and the same power 1t can
-be designed in. " a much more compact way than a heurlstlc theorem
‘prover. For the purposes we are using it, simply a mechanlcal_
tool is needed and resolution seems to be exactly that.-‘The prover

was written in UCI«LISP. Together with the converter of the formulas

into clausal form it is about 10 pages of pretty prihted code.

 One thing that has plagued work on resolution in the past'haeﬂ~=uu-

been preoceupation with completeness. Recognizing that a prover is
worklng in an undec1dable domaln it is obvious that completeness is

going to be restrlcted by the real factors of tlme and space. The

main objectlve in choosging "a strategy and tunlng a prover s parametePS‘

is optimizing the number of inferences it gets. It is the author's
conviction that in thls context -incompleteness 1s a feature, rather
than a drawback. Thus, completeness in the prover in questlon 1s '

'restrlcted severely in many different ways.

' The prover employs the MU strategy. It eohsists'maihl& of

;keeping only’resolvents containihg merge liferals or haoing a unit

‘parent. It has been shown that if 1n a refutatlon there are
resolvents not satlsfylng the above restrlctlon there always exists
another refutation (from the same- input set) where.suoh.resolvents-
are obfained first W1th thls 1n v1ew the strasegy ooca31onallj
allows for a round of general resolutlon aftcr Wulch the restrlotlon
is 1mposed. Experlments w1th dlfferent strategles for resolutlon,
.carrled out earller by the author at the Unlver51ty of Texas have
ishown the MU strategy to ‘be qulte efflclent 1n the set—theoretlcal

_ domain. 'One property of the MU strategy, coupled‘wlth_a llmit on

the depth of fuhctional nesting in the resolvents, is that it’

'~*usually »uns qulckly out of poss1b111t1es to resolve when glven a

satlsflable set of clauses (i.e. insufficient references) ThlS T
is very important in CAI applications because one very frequent
error of the student users has been to supply insufficient:or
- incorrect refererces. 1In such a case it is very desirable thaf the
"ﬁrdvef detects this fact as soon as possible, rafher than grird.ﬂ
unitil the time limit is reached This property has strongly
1nf1uenced the selectlon of the MU strategy.
-Equality plays a very important role in just about any mathematical
'theory, iacludiag set theory. éonsequently it gers-sﬁecial freathentr |

in the prover. -Like the resolution strategy, the equality replacement

is very réstriéted.'rFirst of all, only déemodulation is performed,
'i;é.,"onlyrless cﬁmplex.terms.aré substituted for more complex.
(The measure for complex1ty is the depth of functional nestlng)
Second replacements are done only on the basis of unit equallty
clauses. An important kludge is that if the input set contalns a
.ground unit equality clause, one of the terms is substituted .
E uniformly fop-the othér’thrdﬁghouf the set and the clause is dropped;
. Nevertheless, treatment of equality remains the weakest point in
the prover and the‘majority of infergnces seen by the users and
missed by the prover involve equality. A large quantity of theo-
retical fésults én é@uality has been accumulated lately, but little
~ has bqen drawn from practical experience. There is a need of
implementation_oriénted strategies for equality based on the above-
. mentioned principle of optimizing the number of inferénces withiﬁ

the prover's reach.

Probably the moétAfrustréfing-pfopéfty éfifhe prover from.a CAI
point of view has been the fact that thué far it has been impossible
 to characterize the class of theorems acceﬁted by the—provef despite
substantial effort on the part of members of the TMSSS staff. This
'is most likely a éonséquence of the unnatufal_way in which reSolufion
works. Sometimes the prover .is éble to vérify steps much larger
“ thén the user can.see, while ofher times it fails at_stepﬁ which the
user expects to be éccepted. It woula'have been very cbnveniené if

one could give the users some more accurate idea what to expect from

the prover. . .

Inferences which are missed by the proﬁer, while being obvious

to the user, are largely due to the fact thétfresolution breaks down

the formulas to the atomic level before it can find a proof. For

example, the ihferehce'A

'(vm,n',__p,A,'Bj"(A (B =0 AK(A) = m AK(B) =
“AXK(AUB) =p+m+q=p)
_£rom | o |
7 mn,p) (3 A, B (A nB =0 AKA) =m AK(E) =
A K(A U"B) =p) <>m+h= p). '

cannot be verlfled by the p“over The human user, though with his
17We11-developed abstractlon capabilities qulckly sees that the left
 side of the 1mplleatlon can be looked at as ¢(m,n,p,A,B). Hence

‘the'inferenee becomes:

OV'm,1,p,A,B) ($(m,n,p,AB) > m + i = p)
£rom

(v m,n,p) ((3A, B)$(m,0,p,4,8) <> m+ 0 = p) .

of course, seen thls way, the 1nference is 1mmed1ate for the
ffover, too. There is a prov151on in the proof checker for the user
~to paSS'to‘the prover the abstracted form of the formulas. What "
ﬁould be desirable here is to. .have a heufistic coupler between the
-prover and the Proof checker Wthh 1ooks at the p0881b111t1es of

abstractlon in the set of formalas.

ABSTRACT -

* A Prociarative Approaéh,gg Problem Solving

by

Daniel H. Fishman
Bell Telephone Laboratories

The thesis presented here is that there is no conflict
between the "procedural" and "declarative™ approaches to infer-
ence and prcblem solving. Indeed, rather than being in conflict,
these approaches are complementary. They should be brought
together where they can function in a common framework. In this
paper, we make a case for embedding a declarative-typs deductive
sysiem into a .procedural language for problem solving. The
-resulting proclarative system will be significantly more powerful
than either the pure procedural or declarative systems by them-
selves. Such a merger would have the effect of making it easier
to construct problem-solving systems, while simultaneously making
the resulting systems more effective. : "

, It is widely agreed that deductive methods are impertant |
tools for problem solving. . Rudimentary methods for automatic
deduction have beer. inccrporated into the languages developed for
problem solving. In contrast to the approach taken in a language
like PLANNER, we believe that the use of deduction should be
explicit and amenable to control rather than implicit and sub-
merged in the machinery of the language. Easy access .to the.
mechanisms. controlling the deductive processes will allow its
user to guide and limit the search as necessary. Furthermore, we
believe . that the syntactic representation of declarative
knowledge admits more effective control and communication between _
active "problem-solving methods" than does procedural representa- .
~tion. That is, in a declarative system, the frontier of the
search tree is available for examination at each search step per-
mitting the automatic selection of the "best" next subproblem”. to,
attack. Although the analog exists in the procedural setting, it
is quite unwieldy to control. In a language like CONNIVER which
permits such control, ths programmer must provide it himself at
- every pcint where a compleéx search is invoked. What i= most
likely is that the programmer will use the default search control
mechanisms provided by the language, resulting in the most inef-
ficient search. In PLANNER and CONNIVER this results in a
depth-first search. ' -

Currently, the capabilities of deductive systems may be
brought to bear only on problems in a fixed and static data base.
On the other hand, in problem solving, one is interested in
exploring arbitrary numbers of data bases (contexts, world
models, etec.), in search of a world model in which some goal con-
dition 1is satisfied. We believe that it 4is useful to view

-l 2-

problem solving as involving two separate search problems, One
‘of ‘these is a low-level deductive sesarch of a data base
‘representing a world. model, For such searches, .a primarily
declarative approach seems best suited. The other Search problem
involves the high-level exploration of a space of world models.
. For . such searches, a primarily procedural approach seems best
suited. The use of a deductive systenm incorporating a powerful
search procedure to oversee the interaction of "problem-solving
methods" in controlling the low-level search, can free its user
from the intimate control of this search and allow him fto concen-
trate on the high-level search of alternative worid models.

Deductive systems (theorem provers) have advanced well
beyond the wuse of purely syntactic inference rules and blind
search strategies. Methods exist to employ semantiec dinformation
(semantic nets, types, counts, advice, etec.) to restrict infer-
ences and control searches. Flexible strategies exist for sub-
problem selection and avoidance of redundant inferences. Systems
have been developed (though are largely untested) for dealing
.with largée data bases. Inference rules exist for dealing with
. sets of objects. All of these tools may brought to bear on - a
given problem automatically. Thus, if one could rely on such
facilities being invoked as a default, rather than the simple
depth-first search provided as a default by current problem solv-
ing languages, considerable progress will have been achieved.

The proclarative ‘approach to problem solﬁing would possess
the following features:

® A powerful deductive system with many features such as those
noted above. This system would be used to perform deductive
searches of a given data base of assertions, and of general
rules which are analogous to THCONSE's and IF-NEEDED's.

® A host 1language containing many of the features of a
problem-solving language such as CONNIVER. 1In particular,
it would include a hierarchical data base faeility in which
to represent and dynamically explore a model search space.
It would also include the ability to add and delete nodes in
the hierarchy and to add, delete, and modify elements of any
node. .)

¢ Any model, represented by the contents of nodes in .a path
through the hierarchy, would be accessible to the deductive
system as a data base for a given request. Thus, a request
would -specify a path representing the data base, and the

.~ problem (or question) to be solved (or answered). It would
also specify any restrictions which should be employed,
€.g., it could require that the search be restricted to
assertions only, or that it be incremental, perhaps using
assertions first and general rules later, if the search is
restarted.

-3 -

e The control structure of ° the deductive system would be
accessible to the programmer, -giving him the option of
-allewing independent ccntrol, or cf providing an appropriate

. measure of control himself. :

@ The ability would also be provided to suspend a search after
some increment of search effort, to efficiently save its
state, and to resume or delete a suspend=d search as
desired. : -

" Implicit in this paper is a rebuttal to the question of whether
"declarative® methods or '"procedural" methods are better.
. Rather, we believe that the question that should be asked is how
can we combine- these approachas to achieve the best possible
results., We believe that a proclarative approach to inference
and problem solving such as the one described above offers the
best of both possible worlds. ' -

Deduction in the Pejorative Sense
Drew McDermott %ﬁg&

‘ The word "deduction™ has many ranges of meaning in ordimary
language. Sherlock Holmes used it to mean "reasoning generally."
Traditionally, it has meant logically necessary reasoning,
contrasted with induction(In AT research, for most of the last
decade, it has often referred to a representational scheme and

class of alporithms (“theorem provers") so abhorrent as to be

avoided at all costs.

In this paper I will argue that this form of deduction is
.ﬁith us to stay, not as the main control str@cture required for
) inteiligence, but as an inevitable component of the
information-retrieval systems intelligent programs need in order
to be flexible. I will report on the results of using a théorem
prover as such a component of a problem solyer, and on some

' wini-experiments with other novel uses.

There are gcod reasons for the dislike of theorem proving by
Al researchers, but many people who dislike it do so for bad

Teasons, or just because of fashion.

All theorem provers operate by applying the "resclution"
rule: From P° and P->Q, infer Q°, where P matphes P’ ande' is
the result of substituting into Q the variableg bindings obtained
from the match. Often this rule is used:'dn a "backﬁard" way:
from 1Q; and P->Q, infer "|P’. Given a set of axioms and a goal
G, most thenrem provers form the skolemized negation 7}G of what

they are trying to prove and apply "backward" resolution until a

Page 2
goal |P finds a P’ which matches it in the axiom set.

in order to handle conjunctive goals, we must generalize the

rules to be
T(QAC)
P>
PACT)
and
(PAC)
—r
%

which say, roughly, solve one conjunct, then go on to the others.

All "theorem provers" ' (and AT languages with
"pattern—directed procedure invoéatiOnﬁ) work this way, chaining.
_backwards from goals through implications to facts.
ﬁnfortunately, the resolution 1literature is perversely obscure
about such mattersl Once they are made clear,' it can Be seen
that sﬁme criticisms that are often ma&é, that résolution isn’t
goal-directed, or that looking for a refutation is unnatural, are

misguided.

The real_prob%Fm‘with theorem provérs is also the problen
with pure AL languages, semantic networks, and large data bases.
This is the problem of handliﬁg conjunctive goals. -Tﬁe rules I
gave above amount to an implementation of a "generate and test"
‘strategy. Solutions (variable bindings) which satisfy P’ may not
satisfy € at all. For *examplé, consider ‘'the goal‘1((SOEER
?X) A (IRISH ?X)). The rule as given entitles us to generates
SOBER persons, and detach *}IRISH ...) for egch-of them. This

could create an arbitrarily large number of goals with (in “this

case) a very small return.

Page 3

. There is nothing wrong with "generate and test.” In cases
like this it is the only possible strategy. But for doing

problem solving or symbolic computation, it is a disaster.

{Green, 1969)

In my opinion, criticizing all other problems with deduction

is a waste of time, since the compromises necessary to correct

them have been accepted by almost everyone. The result of these
compromises is an AT language like PLANNER (Hewitt, 1972); For
example, the deductive systems cannot conclude é fact, even
-proﬁisionally, from an inability to prove it false. PLANNER, and
any other AI language, can do it with something 1like the THNOT

operator.

In spite of the weakness of deduction in the pejorative

sense, it is indispensable, for these reasons:

> It treats quantifiers and other complexities in a pleasing

manner.

> The "backward chaining" paradigm is useful in other
contexts besides straightforward deduction. "Abduction" and

"matching" (in the GPS sense) may be thought of as "deduction

with gaps.”

> Unlike its competitors, deduction is able to accept new

information (facts and implications) easily.

Page 4

> It is-'easy, to keep track of deductive.roperationsg
conclusions can be tagged with their proofs, and these "data '
dependencies" can be used for data base debugging and other

ﬁurposes. (Stallman and Sussman, 1976)

> Possible explosions from moronic generate-and-test
situations can be c¢aught and returned to the problem-solving

" monitor or human user for help.

I haﬁe tested these ideas in a coﬁple of ways: . first,. by
implehentiﬁg_ a problem-solving system which accesses all its
- information through a theorem prover (McDermott, 1976); and
second, with some ' smaller-scale experiments in using backward
chaining for abduction (Pople, 1973) and induction. {Winston,
1975}

References
- e

-

Green, C. Cordell {1969) Theorem-proving by resolution as a
basis for question—answering systems. In Meltzer, Bernmard, and
Michie, Donald (1972) (eds.) Machine Intelligence 7.

Hewitt, Carl (1972) Description and theoretical analysis (using
schemata) of PLANNER: a language for proving thecorems and
manipulating models in a robot. Cambridge: MIT AI Lab Techical
Report 258.

McDermott, Drew V. (1976) Flexibility and .efficiency in a
computer program for designing circuits,. Unpublished Ph.D.
thesis, MIT.

Pople, Harry (1973) On the mechanization of abductive logic.
Proc. IJCAT 3.)

Stallmand, Richard M. and Sussman, Gerald J. (1976) TForward
reasoning aod dependency-directed backtracking in a system for
computer-aided circuit analysis. Cambridge: MIT Al Lab Memo

. : _ _ ' : Pape 5

Winston, Patrick (1975) Learning structural descriptions from
examples. In Winston, Patrick (1975) The Psychology of Computer
Vision. New York: MecGraw-Hill Book Company.

SEH R PUETR ¥ FF N R AR~

[PSPLPVIE DR

Informatics Laboratory

Linkoeping University ' April 18, 1977 o .
Erik Sandewall, lew :

Predicate calculus as = blueprint fof programs

My view of the approprlate usage of predicate calculus for knowledge—basec

program systems (for example Q.A. Systems) can be summarlzed as follows:

— some parts of such systems can be well expressed in P.C., others can

not.

- a SPE“lflcat¢0n in P.C. of the appropriate parts of such a system 15

{or at Jleast, should be) a very high level representatlon. Its reducth'
to actual execution in the computer, through an interpreter such as a

theorem prover or through a compiler, is a complex and delicate operati i

- at least for the time being, it is therefore best to view the P.C. repr--
sentation as a specification for a program, which is then transferred
menually into an sctual program. This niode of operation is analogous to
what is done in programming applications involving numerical computatié P
where a mathematical formulation of the problem serves as the blueprint
for the program. It provides the necessary structure to the programming%
process and the program itself, and is also an aid to documenting the

program and explaining its performance. £

I propose to talk partly about this approach and partly about my experienc
when it was used for a collection of axioms expressing a number of common
ratural-lenguage coﬁstructs. The actual program reflects the given axioms,
and can easily be understood if the axioms are.known, but in writing the
program it was also natural to introduce a number of 1mplementatlo;’ deeci~
sions to enhance efflclency. An analysis of those decisions provides guide
lines both for continued use of the approach, and for posslble future axiom
compilers which efficiently convert axioms into corresponding, efficient
code. One observation is that such compilers should analyze the given set
of axioms before they proceed to compile the individual axicms. This means .
also that the present;y fashionable approach to view predicate calculus as .
a programmlng language, to be 1nterpreted by a theorem-prover is computa~ -
tionally wasteful, ’

r

A FIRST ORDER THEORY OF
DATA AND PROGRAMS

‘Keith L. Clark and Sten-Ake Tdrnlund

Department of Computing and Control Depatment of Computer Science
Imperial College of Science and Technology University of Stockholm

London University
: Sweden

Clark & Tarnlund

i : Abstract.

In this paper we propoée-first order predicate logic as a formalism for data
; specification, program writing and program verification.
;; e] It has been proposad (Hoare [6], Liskov et.al [9]) that programming
léngdages should have data définition facilities which allow the programmer to
characterize his data by its essential propertizs. In logic the facility is
‘ axiomatic definition. We dem.nstrate this in section 2 by giving axiomatic
i B definitions of several fundamental data structures.

) : The relation that always holds between thie input and output structures of

In section 3 we give axicmatic

she

A : some algorithm partly chéracterisusrtﬁe algorithm.
definitions of the lnput-output relation of two fundumental algorlthms for
data structures we have defined. From these we derive a set of Horn clauses.

Under the procedural interpretation of logic (iayes [4] Kowalski [e']) this

1{ - set of clauses becomes a logic program for the algorithm when we add suitable

ﬁ‘_ _control informaticn. In fact for the logic programs we derive an ordering of
f:‘) the llterals (procedural calls) in the body of each clause is the only control
b : required. With a suitabile orderlng we.get efficient computational behaviour r EHE
& top~down theorem prover for Horn clauses (Kowalski [3]). The prograns can be run
| o . interpretively on the Marseille PROLOG (Rou qei [}l]) oxr compilea and executed

irj_ - as DEC 10 machine code by a version of PROLOG implemented at Edlnburgh (Warrcn Ll:

If possible programs should be verified. In sect10n=4 we show how the axicas

that define the data and the input-output rclation of the program can be used

to verify the program. We use induction -schemas to prove general theorams about
Luput—output relaLion which quarantes termination and correctness of the progra

In effect these are structural induction proofs (Burstall [2]) within a firs :

order theory {cf. Boyer and Moore Ll]). Each induction schema is derived from

{; " the axiomatic characterization of the data.

The whole sequence, the data axicmatizaticn, the input—outpht axiomatization

and the verificstion can be thought of as steps in the development of a first ouu

thizory of data and programs. Indygd our axicmatizations and proofs are analoguusu

to those of a first order theory of arithmetic (Mendelson [ld]} Howevaer, Such .
theory not only provides us with a means of clarifying concepts, it also provide:

us with a methodology for writing and verifying programs.

-

_-__‘——-—..-_._.. - - .
' A SKETCH OF THE THEORY

’
-

\

- USING LEMMAS IN AN AUTOMATIC THEGREM PROVER
. FOR RECURSIVE FUNCTION THEORY

Robert 5. Boyer S]
and

Jd Strother Moore _ L i

Computer Science Laboratory
Stanford Research Institute
Menlo Park, Ca. 94025

The research reported here has been supported by the Office of Naval
Research under Contract NO0O14-75-C-0816, the National Seclence
Foundation under Grant DCR72-03737A01, and the Alr Force Office of |
Scientifie Research under Contract FUY4620~-T3-C~-0068.

We have implemented a computer program that proves ;heorpms about
recursive functions defined on finitely reﬁresentable objects, We
describe how that program uses lemmas. The new work significantly
extends our earlier work [1], [2], (3], [4)] because it is not
limited to primitive recursion or the world of binary trees. This work
is closely related to (but independent of).the recent workjbf' Audin [5)
and Cartwright [6]. e

-

The mathematical theory in which our theorem provef operates 13 a free-
variable equational caleulus for recursive functions in the spirit of
Skolem [7] and Goodstein .[8]. The theory admits thé introduction of
arbitrary total recursive functions. The ddmain of objects is
partitioned into an infinity of disjoint_"type_classes."

_ The wuser is free to define axiomat;éally the properties of any
ciass. The only initizl objects are TRUR and FALSE, The only initiai
functions are IF ‘and EQUAL. (IF x y2) i3 z if x 1is FALSE and is y
otherwise. (EQUAL u v) is TRUE if u is v and FALSE otherwise.

1

v

_ Integers, literal étﬁms, pairs, push~down ‘stacks, characters, and
strings of characters are examples of classes that one may axiomatize.
There is a facility for succinctly axiomatizing new classes of objects
with properties virtually identical to Burstall's structures [9] and
close to the style of Clark and Tarnlund [10]. '

1

The theory also contains a version of the principle of induetion
called the Generalized Principle of Induction (Noetherian induetion) in
Burstall [9], The principle allows one to induct over any well-founded
partial orderlng In our implemertation of it, one can induct on any
well-fbunded partial ordering that can be induced by mapping abjects (or
n~-tuples of objects) into the ordinals,

. HOW LEMMAS ARE USED

The new system uses lemmas in many ways; we will explain four of
the most common uses. The lowest level use of lemmas and axioms in our
system is in the routine called TYPE. SET, which takes an expression and
returns a set of primitive type classes, one of which contains the value
of the expression. TYPE.SET works by recursively . exploring the
expression, unioning the type sets of both 6utpu€3 of IF's, using axioms
'to determine the types of akiomatically defined functions and
inductively computing the type sets of defined functiona (unless lemmas
are avallable that specify the possible tyﬁes)

The second use of lemmas is as rewrite rules during simplification.
Of course, the simplifier uses funection definitions as rewrite rules to
"open up" a function call by replacing it with its definition- (when the
result is gsimpler ' in some sense). The simplif;er also uses TYPE.SET,
for example, fo rewrite (EQUAL u v) to FALSE if the types of u and v do
not intersect. But more generally, the theorem prover interprets all

axioms and lemmas as rewrite rules in the following way.

Given any formula (axiom or lemma) consider all of the sequents
Hl ¢ H2 & ... ¢ Hn -> C

one cap deduce from it by propositional calculus, We classify each

L]

3equent according to the form of C. If C is of the form (NOT u) then
‘the rule can be used to rewrite any term which unifies with u to FALSE,

provided the instantiated Hi can be established. If C is of the form
(EQUAL u v) it can be usedftb rewrite u to v, again provided the
instantiated Hi can be establiéhed Otherwise, if C is just u, where u
i3 Boolean (i.e. TYPE.SET(u) contains nothing but TRUE and FALSE) then

it can be used to rewrite u to TRUE under the same provision.

When the simplifier has decided to use a given rewrite 1t tries to
establish the Hi by (recursively) simplifying them (to non~-FALSE).

Care is taken to avoid infinite: regression (e.g., repeated
applications of a eommutivity rewrite or "pumping" up a term with a
rewrite like (P (F x)) -> (P x). For example, we avoid the first
problem by refusing to apply a rewrite of the form (EQUAL u v) when u
and v are variants unless the result is lexicographically less than the
original formula. Thus, the lemmas.

(PLUS 1 j) = (PLUS j 1)
and o
(PLUS { (PLUS J k)) = (PLUS j (PLUS 1 k)),
with the lexicographic restriction, cause nested plus expressions to be

right associated with their arguments in (lexicographically)-ascending
order. ‘ i)

A third use of lemmas arises whén the system Beneralizes a
conjecture to be proved. As in our earlier LISP theorem prover [1],
the System generalizes subterms common to both sides of an equality or
implication. Unlike the LISP theorem prover, the new system is
sensitive to previously proved facts about thé subterm. Thus, if 1t had
proved that (SORT x) 1is a list of numbers when x is a 1ist of numbers
.'and it generalizes (SORT x) in:

- (LIST OF .NUMBERS x) & (ORDERED (SORT x)}) & (NUMBERP i)

(ORDERED (MERGE I (SORT x)))

it produces:

(LIST.OF. NUhBERS x) & (ORDERED z) & (NUMBERP 1)
. & (LIST.OF.NUMBERS.z)

"I

(ORDERED (MERGE 1 2)}.

This use of lemmas aliows the new system tc avold one of the most common
- failure modes of our earlier LISP thaorem prover: generalizing a
conjecture too much.

A fourth way lemmas can be used is in the establishment -or an
induction principle. For example, the lemma: '

i < max ~> max-(ADD1 i) < max-i .‘
informs the system that it iz sound to induct wup by ADD? to a maximum
(e g., that to prove P(x, y) inductively one may prove it when ~(x ¢ y)
and prove it when (x < y) assuming P(x+1, y)). -

As observed in Boyer and Moore {11, what makes an induction
prineiple appropriate for a conjecture is whether it supplies inductive
- bypotheses about the recursive calls introduced when some chosen set of
functions in the induction conciusion are opened up. Thus, whenever a
new function is introdueed the system analyzes it and tries to
construct one or more inductive principles from its known lemmas that
are appropriate for the new funetion. At prove time, it goes over all
the possible principles suggested by functions in the conjecture,
combines them when they are similar (an induction down {CDR x) is merged
into one down (CDDR %)} or when they compete for the same variable (an
irduction on x and ¥ would merge with one on Yyand 2 to become an
induction on X, y, and z), and finally gselects the most appropriate

Induction on the basis of which one satisfies the largest number of
recursions.

The analysis at definition time (to create induetion principles
that supply hypotheses ~about the recursive calls) is the erucial step
involving lemmas. Using its lemmas, the system tries to find some
eombination of measures on subsets of the arguments that would decrease
on each recursive call It can use the principle of lexicographic
ordering to combine measures to explain the recursion of functions like

3

Ackermann's function (where a measure of one argument goes down or stays
constant while another measure on another argument goes down whenever

the first measure of the first argument stays constant).

By finding such a measuréﬁ and inventing the necessary conditions
from the lemmas, the system can obtain a sound induction hypothesis
about each n-tuple of values of variables changed in' recursive calls
(regardless of what the fuﬁction actually tests before recursing or

whether all of the variables are involved ih the measure).

T.

9.

10.

REFERENCES

R. Boyer and J Strothe}' Moore, "Proving Theorems about LISP
Funetions," JACM, Vol. 22, No. 1y pp. 129-14% (1975).

J Strother Moore, "Computational Logic: Structure Sharing and Proof
of Program Properties," Ph.D. thesis, University of Edinburgh
(1973).

J Strother Moore, "Automatie Proof of the Correctness of a Binary
Addition Algorithm," SIGART Newsletter, No. 52, PP.13-14 (1975).

J Strother Moore, "Introduoing Iteration into the Pure LISP Theorem
Prover," IEEE Trans. Soft, Eng., Vol. 1, No. 3, pp. 328-338 (1975).

R. Aubin, "Mechanizing Structural Induction,* Ph.D, Thesis,

-University of Edinburgh, 1976,

R. Cartwright, fortheoming Ph.D thesis, Computer Science
Department, Stanford University, Stanford, California(ig77).

T. Skolem, "The Foundations of Elementary Arithmetic Established by
Means of the Recursive Mode of Thought, without the Use of Apparent
Variables Ranging over Infinite Domains,™ in From Frege to Goedel,
(ed. Jean van Heijenoort) Harvard University Press, Cambridge,
Mass., pp. 305-333 (1967).

R, L. Goodstein, Reeursivg Numbher Thebru, North-Holland Publishing
Co., Amsterdam, (1957).

R. M. Burstall, "Proving_Properties of Programs by Strictural
Induction," The Computer dJournal, Vol. 12, No. 1, pp. 41-48 (1969).

K. Clark and S-a. Tarnlund, "4 First Order Theory of Data and

Programg,* Department of Computing and Control, Imperial College,
London (1976).

Tan. 77

THE AUTOMATIC SYNTHESIS OF RECURSIVE PROGRAMS

ZOHAR MANNA RICHARD WALDINGER

" Artificlal Intelligence Lab Artiticial Intelligence Center
Stanford University ' -Stanford Research Institute
‘Stanford, Ca. : Menlo Park, Ca, '

Abstract

We describe a deductive tech'niqu-e for the automatic_cbnstruction of recursive programs to meet
given input-output specifications. These specifications express what conditions the output of
the desired program is expected to satisfy. The deductive technique Involves transforming the
specifications by a collection of rules, summoned by pattern-directed function invocation. Some
of these transformation rules express the semantics of the sub ject dorhain others represent more
general programming techniques. The rules that introduce - conditienal expressnons and’
recurswe calls into the program are discussed in some detail. :

The dedu,ct!ve techniques described are embedded in a running system called SYNSYS. This
system accepts specifications expressed in high-level descriptive language and attempts to
transform them into a corresponding LISP program. The transformation rules are expressed in
the QLISP programming language. The synthesis of two programs performed by the system

are presented. - -

" T his research was supported in part by the Advanced Research Projects Agency of the Department

of Defense under Contract MDAS03-76-C-0206, by the National Science Feundation under
Grant DCR72-03737 A0I, by the Office of Naval Research under Contracts NOOOI4-76-C-0687
and NOO0I4-75-C-0816; and by a grant from the Unifed States-—lsrael Bmattanal Sctence
Foundation (BSF), [erusalem, Israel. -

T he views and conclusions contained in this document ave those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or iniplied, of Stanford
University, Stanford Research institute, or the U.S. Government. '

S

AN ALGORITHM FOR REASONING ABOUT EQUALITY

by o - o
Robert E. Shostak . '
Stanford Research Institute Lo
Menlo Park, Califoraia 94025
1. Introduction

To be useful for program verification a deductive system must be able

to reason proficiently about equality. Important as its semantics are,

equality is often handled in aﬁ ad hoc and incomplete way--most usually with

' 8 rewrite rule that substitutes equals for equals with some heuristic gui-

dance. This article presents a simple algoritbhm for reasoning about equality
that is fast, complete (for ground formulas with function symbols and equality),
and useful in a variety of theorem-proving situations. A proof of the theoren

or: which the algorithm is based is given as well.

- DECISION PROCEDURES. FOR SIMPLE EQUATIONAL THEORIES WITH PERMUTATIVE

EQUATIONS: COMPLETE SETS OF PERMUTATIVE REDUCTIONS

+

by VD. S. Lankford and A. M. Ballantyne

SUMMARY

Familiarity with concepts related to complete sets of reductions

is assumed, see, Knuth and B'endix (1), Lankford (2), and Slagle (3).
The ‘primary disadvantage with complete sets of redﬁctions is that
certain axioms, like commutative axioms, cammot be included in

- ‘complete sets of reductions. In this article we seek to covercome
Vthis difficulty by using finite equivalence class Iﬁethods.

The basic idea is the following: to detemine if t = u is a
consequence of aset & of equations, it suffices to determine

if t and‘ v are in the same e equivalence class, where
t=eg u iff t = u is a consequence of c.. The difficulty
with this approach is that there is no algorithm to decide if
t.and u are in the same Xe equiv'aience class. However,

~ if the equations of & are such that all = ¢ equivalence ' : _ i
classes are finite, ther_x in principle t = u can be decided.

Since we do not know of an algorithm which, given a set £ of

equations, decides whether all ':\:E, equivalénce classes are

finite, we consider a subclass of the general problem. Let

n(x,Y) be the number of occurrences of the symbol x in -the

basis of theorem provers for equality. Iq addition, we believe that
many_common‘decidable equational theories can be decided with

complete sets of permutative reductions. For example,

Rl {x:1,1-x} —> {x} ,

R2. {x- (xfl), (x"l)- x} —_— {l})

r. (11} — {1} , |

RL. {(x"l)"l_} -—--} {x} , and

. {xe 9, -0} — {eD oY, 6D -)]
form & complete set of permutative reductions relative to
P={x-y=y-x, & DNez=x-(y-2)} ,

which decides equational Abelian group theory.

Let us illustrate permutative reduction by showing how
(Lex)« ((y=(x1) e 2)= (we-z) (v wl)) is proved.
Form = ((1 « x) « ((y « (x1)) + 2)) and ((w e 2) « (y - (w1)))
and permutatively reduce them as far-as possibleﬁ
2l x) - (7) e 2)) > ylx e (v« (D) ¢ 2))
' ﬁx@(y-Z)z{y-z,ﬁ'y},and
2o 2 G M > xaey) = {aey,yea} .
Since eqﬁivalence classes are either equal or disjoint, we only need
check if a member of one occurs in the other. Thus, the given

theorem is proved.

term Y . We say t = u Iis_a permutative equation iff n(x,t) =
n{x,u) for each symbol x . For example, X+ y = y - X and
(x»y)+s 2z =x - (y + z) are permutative equations. If @

is a finite set of permutati#e equations, then all ch equivalence

classes are finite.

Equations t = u which are not permutative eguations are treated

as permutative rewrite rules xm(t) — x&,(u) or Q-:d:,(u) - :::G,(t) s
where x@(t) is the xp equivalepce class of t . :Notions of
immediate permutetive reduction, finite termination property,

unique termination property, and complete sets of permutative
reductions are defined in the obvious way, based onrthe corresponding

" concepts in Knuth and Bendix (1) and Lankford (2).

This arﬁiéle develops two mathematical characterizations.of the
unique termination property for finite sets of permutative rewrite
rules known to have the finite termination property. When ©
consists entirely of commutative equations, it is shown that there
-is an algorithm whiqh decides unique termination for finite sets
of permutative rewrite rules known to have the finite termination
property. For more general séts ® it is not preséntly known
if there is an algorithm which decides unique termination for
finite sets of rewrite rules known to have the finite termination
7" “'property. Nevertheless, it is shown that the mathematical
chéracterization of unique termination can be used with the

completion attempting methods of Knuth and Bendix (1) to form the

REFERENCES

2.

3.

”

Knuﬁh, D. E. and Bendix, P. B. Simple word problems in universal

"~ algebras. Computational Problems in Abstract Algebras,

J. Leech, Ed., Pergamon Press, 1970, 263-297.

lankford, D. S. <Canonical inference. Automatic Theorem Proving
Project, Depts, Math. and Comput. Sci., Univ. of Texas, report
ATP-25, Jan. 1976.

Slagle, J. R. Automated theorem proving for theories with
simplifiers, commutativity, and associativity. JACH 4,
& (Oct. 1974}, 622-642. :

i

NOTES

