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Foreword

The following contributed papers were selected by the program committee
from abstracts submitted by the authors 10 the Fourth Weorkshop on Automated
Deduction. The final papers were prepared by the authors in camera ready
form and have not been refereed. Some of the papers are preliminary reports
of continuing research. Many of them will appear in more polished and com-
plete form in scientific journals.

William H. Joyner, Jr.
Proceedings Editor
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AVERAGE CASE COMPLEXITY OF THE SGATISFIABILITY PROBLEM
aAllen Goldberg
Department of Computer Science
Courant Institute of Mathematical Sciences

New York University, New York, N. Y.

Abstract
an average case analysis of the bavis-
Putnam procedure is performed with a
variety of underlying distributions
For each of these distributions
is obtained on the

assumed.,
a polynomial bound
expected time complexity of the algorithm,
When a uniform distribution is placed on
the problem instances, the expected time
of the Davis-Putnam procedure is shown to
be O(rnz}, where n is the number of
clauses in the given set and ¥ is the
pumber of distinct atoms in the set., It
is shown how to obtain resolution refuta-
tions efficiently from a Davis-Putnam

refutation.

1. Introduction

In {1) the satisfiability problem for
the propositional calculus is shown to be
NP-complete. Since then, many other
important combinatorial problems have
also been shown to be in this class [5].
A fundamental property of the class of
Np-complete problems is that if one
member of the class possesses a polynomi-
al time algorithm then they all do. Since
these problems have been well studied,
and as yet no polynomial time algorithm
has been found for any of them, they all
are considered computationally intract-
able. Like the satisfiability problem,
many NP-complete problems have important
practical applications and s0 algorithms
that solve the problems as efficiently as
possible are of substantial value.

In a practical context, an algorithm's
profile consisting of both a worst case

analysis and an average case analysis
based on the actual distribution of prob-
lem instances, would be most informative
for evaluating the performance of the
algorithm, Unfortunately,
results are gifficult to obtain because
properties of the actual distribution mar
be unknown, and the technical problems

average case

encountered in performing. such an analysis
can sometimes be formidable. As a results
a worst case analysis yielding an upper
bound on the expected time complexity of
an algorithm is often the best achieved.
The upper bound provided by the worst case
analysis may be a crude one when the worst
case instances are relatively few in num-
ber. A prime example of this phenomenon
is the simplex method for solving linear
programming problems [6]; although a worst
case analysis yields an exponential bournd
[7), acceptably good expected time per-
formance has in fact been observed in
practice.

It appears this is the case for the
satisfiability problem as well. The XP-
completeness of the satisfiability problen
suggests that any algorithm to solve the
problem will have exponential worst case
complexity. In this paper we present an
average case analysis of the bavis-Putnam
procedure (41, an algorithm to solve the
satisfiability problem, that indicates
that this NP-complete problem is not
intractable. A family of results is
obtained that give polynomial bounds for
various distributions of problem instances.
in particular, if a uniform distribution

on the sample space of problem instances




-

is assumed then the average time complex-
ity is shown to be O(rnz), where r is the
number of atoms appearing in the given
set of clauses and n is the number of
clauses in the given set. In addition,
we show how resolution refutations may be
efficiently generated from the Davis-
Putnam procedure (DPP).

2, Preliminaries

An atem is an element of the set
A= {xl,...,xr}; a literal is an element
of the set L = {xl,...,xr,il,...,ir}.

A literal is said to be negative if it
has a bar, positive otherwise. If L is
the literal x, (X;) its complement, £,
is ii (x;}. A clause is a subset of L in
which a literal and its complement do
not appear. (We choose by this defini-
tion to disallow tautological clauses.)
A set of clauses § = {cl,...,cn}, Ci ct
is satisfiable, if there is a clause

¥ € L such that M 0 C, # @ for
i=1,.44,0.

The Davis-Putnam procedure determines
whether or not a set 5 of clauses is sat-
isfiable, The procedure consists of
three rules:

I. (pure literal rule} If for some
literal L, {L} n ¢, =@ (i=l,...,n)
then letting S,= {c|ces and LgC},
5y is satisfiable iff S is.

II. (unit clause rule} If for some
clause ¢ € 5, ¢ = {L)} then letting
51={c-{£} | ce s and L ¥ C},
Sl is satisfiable iff 5 is.

IIT. (splitting rule) Choose a literal L.
Let 8, = {C - {L} { ces and LgC};
§,= {C-{L}|CES and Igc). s is sat-
isfiable iff S, or §, is satisfiable.

DDP can be described as a recursive pro-
cedure operating on a set of clauses S:

procedure DPP{S};
1, if § = @ then return satisfiable;
end if:
2., if @ € 8 then return unsatisfiable;
end if;
3, if rule I applies to § then
if DPP(Sl)=satisfiable ‘
then return satisfiable;
elge return unsatisfiable;
end i1f;
end 1f:
4. if rule II applies to S then
if DPP(Sl)=satisfiable
then return satisfiable;
‘else return unsatisfiable;
end 1f;
5. else (apply rule III) if DPP(sl)
= gatisfiable
or DPP(52)=satisfiable
then return satisfiable;
else return unsatisfiable;
end 1f;
end 1f:
end DPP;

Termination of DPP is guaranteed by
observing that sets S1 and 82 have fewer
distinct literals than S. Our results
show that rapid termination is expected
because sl and 8, have many fewer clauses
than S.

In performing an average case analysis
it is first necessary to choose parameters
that define a subset of instances of the
problem, and then define a probability
distribution function on the sample space
of those instances, For example, when
analyzing sorting algorithmé the para-
meter chosen is the number of keys, n, to
sort. The uniform distribution, which
assigns equal probability to the n! pos-
sible permutations of the keys, is usually
chosen. As Rabin [9] has pointed out,




an inherent problem of average case anal-
yses is that the probability distribution
assumed by the analysis might not agree
with the actual relative fregquency of
instances. For example, average case
analyses of bubble sort and quicksort (£:3]
which assume a uniform distribution yield
O(nz) and O(n log n) expected time,
respectively. However, in a sorting
application in which keys are in nearly
sorted order initially bubble sort will
show better performance than guicksort
despite these average case bounds. This
preblem can be overcome by proving
results for many distributions, as we
have done. The analysis also aids in
identifying those cases in which the
algorithm performs poorly and so helps
determine the validity of the result in

a particular context.

3, The Analysis

Instances of the satisfiability prob-
jem are parameterized by the number of
clauses and the number of distinct atoms
in the clauses. Let S be a set of
§ € K(n,r) if 8 contains n
composed of literals chosen

clauses;
clauses,
from a set of r atoms, {xl,...,xr}.
Clauses are not assumed distinct. Frob-
apility distributions are placed on
K(n,r) by specifying a distribution
function for Kil,r) and extending it to
the n-fold product space of X{l,r),
¥(n,r}. Let pi,r(qi,r)' i=1l,...,r be the
probability that the positive {negative)
literal Xy (ii) oceurs in a clause in
Kil,r}. For the uniform distribution
Pi,x ™ q,r © 1/3.
any clause in K{l,r) the three possibili-
ties of an atom not appearing, appearing
pesitively or appearing negatively are
egually likely.

j=1,.,.,r, since for

Let § € K{n,r). Then for some
enr bounds the time needed to

(h etep of the

Lemma 1.
constant C,
perform one step of DPP.
DPP entails testing if S is empty; if
g € s; if rules I or 11 are applicable;
and the application of the appropriate
rule.}

nr bounds the length of 5. Scan-
tests are made;

Proof.
ning S once the necessary
in another pass the appropriate rule is
applied. ]

It might be thought that in order to
obtain a good bound on the complexity of
the DPP it would have to be shown that the
unit rule and the pure literal rule are
applied frequently; it is the splitting
rule which introduces the possibility of
exponentially long computations. We
analyze a procedure DPP', which only pex-
forms the splitting rule. pPP' is the
DPP with statements 3 and 4§ removed. A
step of either algorithm takes o{nr} time.
When executing the DFP the possibility
exists that only the satisfiability of Sl
and not 52 has to be determined. Thus the
complexity of DPP' bounds the complexity
of DPP. Let T(n,r) be the average case
running time of ppp' with the uniform
distribution on K(n,r}.

Theorem 1. Tin,r) < crnz.

Proof. We develop a recurrence relation
for T(n,r) based on the number of clauses
that occur in the sets S1 and 52 that
result from the application of the split-
ting rule on an arbitrarily selected atom.
The set S, {c -{f})}jcesandlL§Cc}
has size n - i, where i is the number of

clauses in 5 in which L occurs. similarly.,
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82 has n-j clauses, where j is the number
of clauses containing L. Since the prob-
ability that L occurs in a clause is 1/3,
the probability that i out of n clauses
contain the literal L is the Bernoulli
probability, () (3 £ 1(2)n 1, This holds
for the uniform dxstribution regardless
of whether L is positive of negative.
Hence with the stated probability, S1 and
52 have n-i clauses. Since the literal L
and its negation are removed in forming 5§
and 52, these sets have at most r-1
distinct atoms. The recurrence for T{n,r)
is

cnr +

2 z M & & rmei, -0,

T{n,r} = i=1 1

0

n,r
0, n=90 orr

n v

The first term is the time needed to per-
form one step of the DPP. The second
term is the expected time needed to deter-
mine the satisfiability of s, and §, by
the recursive calls to the DFPP.

To bound T{(n,r), note that T{n,r) is
increasing in r. Hence,

n : :
enr + 2 ] (@& " -1,

T(n,r} <
i=1
= ¢rT'(n) where
T =02} M &EIE i (re1)
i7'3 3 '

i=]1

By a change in index variable

2,i,l,n-1 .,
3) (3) T'({i) .

n-1 n
() =n+2] ({)¢
i=0
We show T'(n) £ n® by induction on n.
Computation verifies that T'(n) £ n?, for
n=1...,12 as base cases, For the
inductive step, applying the induction
hypothesis,

2,1 (%)n—i 12'

T'(n) < n+2 [ e

Using the calculus of finite differences
(see [2]), it can be shown that

n : :
T R O SRS Pty
i=
and so0,
2 4 13 8 2
T'(n) ¢ n+2(5 n + g nin-l}}= =5 ot g0

N

which for n > 13 is less than n". This
completes the induction. The theorem
follows. 3]

Suppose an arbitrary distribution has
been placed on K{l,r}. Let p = 1nf Pi '
g = ing q,r If both p and g are not
zero 'then as the number of literals in !
grows, the probability that any literal
appears in a clause is bounded away from
zero. Under these conditions we can
bound the average time complexity of the
DPP by

n . .
{n,x) = cnr + j [?)pltl-p)n-lT(n—i)
i=1

T
Pra

+ =1 p(n-i),

3 M da-m
X

N33

1

A proof similar to the one given yields

a polynomial bound for Tp q(n,r} for
I

fixed values of p and q. If we set

m=1-min (p,g) then q{n,r)icrnk,

where k = [~ TE%EH

Since the DPP is not a complex proce-
dure, the constant ¢ which appears in our
bounds is not large. Thus the algorithm
will perform well on small problems as
well as having good asymptotic behavior.
Actual experience with the algorithm is
in agreement with these results [3].

4, Resglution

In this section we show how the DPP
can be modified to generate resolution
refutations for unsatisfiable sets of




clauses with only a constant factor
increase in the DPP's running time. The
recursive structure of the procedure will
be used to recursively generate the refu-
tation. Suppose the DPP, given an unsat-
isfiable set S, splits S, in accordance
with rule III, on literal L into sets S1
and 52. Since Sl andg 32 are each unsat-
jsfiable, inductively the DPP can gener-
ate resolution refutations for these sets,
Restoring the literal L (L) into the
appropriate clauses in the derivation,
refutaticns from Sl (Sz) yield resolu-
tion derivations of L and L from 8.
Resolving L and L derives the empty
clause and so completes the construction
of the refutation from S, The complete
algorithm is described as the procedure

RES (5 ,deriv).

procedure RES(S,deriv);

1. i 8 = @ then deriv = { };
return satisfiable; ead 1if;

2. £{f B € 8 then deriv = {g};
return unsatisfiable; end if;

3., 2f rule I applies to S then

if RES(Sl,deriv) = satisfiable
then return satisfiable;
else return unsatisfiable;
end 1f:
end 1f;

4, 1f rule II applies to S then

if RES(Sl,derivl)=satisfiable

then return satisfiable;
else deriv=(restore L to

clauses of deriv1 {yielding
a derivation of L} append
a resolution with L};
return unsatisfiable;

end if;

5. else {rule III applies} 1if
RES{Sl,derivl)=satisfiable or
RES(Sz,deriv2)=satisfiable then
deriv = { ):; return satisfiable;

else deriv={restore L to clauses of

of derivl, restore L to clauses

2!
resolve L with L}:

of deriv append them together,

return unsatisfiable; end 27
end 1f;
end RES;

Theorem 2. There is an algorithm that
generates resolution refutations of an
unsatisfiable set of clauses, 5, whose
running time is within a constant factor
of the running time of the DPP.

Proof. The above procedure may not
achieve the bound specified by the
theorem because of the necessity of scan-
ning the derivation repeatedly to restore
deleted literals. This problem is easily
overcome by initially inserting the
complete clause, without any of its
literals deleted into the derivaticn.
Hence, a derivation is built from
constituent derivations in step 5 by
appending the two together and adding an
additional resolution between the derived
clauses. The refutation constructed in
this way will be identical to the one

generated by RES. 0
Corollary. The average case complexity

bounds of Theorem 1 apply to resolution
as well.

It is interesting to note that another
simple modification of the DPP yields a
procedure in which refutation graphs {10]
are generated with only a constant factor
increase in running time. Shostak proved
the existence of refutation graphs, for
unsatisfiable sets of clauses, essent-
ially by demonstrating such a DFP based
algorithm. He then shows how more
restricted resolution refutations, such
as t-linear refutations, can be effici-
ently obtained by walking the refutation




graph. Thus, the time bound of Theorem 1
applies to t-linear derivations as well.

References

1. Cook, S§. A., "The complexity of
theorem proving procedures", Proc.
Third ACM Symp. on Theory of Comput-
ing, May 3-5, 1971, 151-158.

2. Davis, H. T,, "The Summation of
Series”, The Principia Press, San
Antonio, Texas, 1962.

3, Davis, M., Logemann, G., and Loveland,
D., "“A machine program for theorem
proving®, Comm. ACM 5 (1962), 394-397.

4. Davis, M., and Putnam, H., "A comput-
ing procedure for quantification
theory", J. ACM 7 {1960}, 201-215.

5. KXarp, R. M., "Reducibilities among
combinatorial problems", in Complex-
ity of Computer Computations,

R. E. Miller and J. W. Thatcher (eds.)},
Plenum Press, New York, 1972, 85-104.

6. Karp, R. M., "The probabilistic anal-
ysis of some combinatorial search
algorithms”, in Algorithms and
Complexity: New Directions and Recent
Results, J. F. Traub {ed.), Academic
Press, New York, 1976, 1-18.

7. Kiee, V., and Minty, G. J., "How good
is the simplex algorithm?", Mathemati-
cal Note No. 643, Boeing Scientific
Research Laboratories (1970).

8., Knuth, D. E., "The Art of Computer
Programming, Volume 3: Sorting and
Searching", Addison-Wesley, Reading,
MA, 1973.

9, Rabin, M. 0., "Probabilistic algo-
rithms®, in Algorithms and Complexity:
New Directions and Recent Results,

J. F. Traub {ed.), Academic Press,
New York, 1976, 21-40.

10. Shostak, R. E., "Refutation graphs",

Artifical Intelligence 7 (1976) 51-8&4.




GENERATION AND VERIFICATICN
OF FINITE MODELS AND COUNTEREXAMPLES
USING AN AUTOMATED THEOREM PROVER
ANSWERING TWO OPEN QUESTIONS®

by

Steve Winker

Northern Illinois University

ABSTRACT

Two open questions in ternary Boolean algebras [1,
2,6] were answered with the aid of an existing
automated theorem-proving program without recourse
to any additional programming [6]. The new auto-
mated theorem-proving techniques developed in
answering the open questions are presented in this
paper; essentially the existing theorem prover is
used in a nonstandard way to seek and verify small
finite models and counterexamples for a first order
axiom system, Exhibiting a model of an axiom sys-
tem proves it consistent; this facility complements
traditional theorem-proving methods which can only
prove inconsistency.

1. INTRODUCTION

The solution of two open questions in mathematics
with the aid of an existing automated theorem-
proving program exhibits progress toward the long
standing goal that automated theorem provers be of
aid to mathematicians doing research, Tradition-
ally automated theorem provers have only focused
on the attempt to prove a theorem true, while
neglecting the search for a counterexample, -Tech-
niques (within the context of our existing theorem-
proving program) are described in this paper for
the construction of small finite counterexamples
in particular and models in general. The user
must make some decisions about what sort of model
to seek, but much of the work invelved in search-
ing for models car be done automatically. To
repeat, no reprogramming is required to further a
given model search or to attack a new preblem or
new set of axioms,

The two open questions answered concern indepen-
dence of axioms in an axiomatization of “ternary
Boolean algebras" by A. A. Grau [2]; the rssults
are deseribed fully in Winker and Wos [6]. It is
the purpose of this paper to present the new model-
finding techniques in detail, No new programming

w

This work was supperted in part by NSF grant
MCS§77-02703, and in part was performed under the
auspices of the U.S. Department of Energy while
in residency at Argonne National Laboratory.

+Grau Ternary Boolean Algebra Axioms (see also
Appendix I):
1: F{V,W,F(X,Y,2))=F(F(V,W,X),Y,F(V,¥,2})
2: F(Y,X,X)=X
31 F(X,Y,G(Y))=X
4: F(X,X,Y)=X
5: F(G(Y),Y,X)=X

was required to implement the model-finding tech-
niques; rather, the use of certain special clauses
(see Appendix I1) enabled our existing theorem
prover to do the desired operations, The terh-
niques will be discussed in the context of the
question to which they were first applied: the
independence of axiom 2 of the Grau ternary
Boolean algebra axioms {(Appendix 11} from the
remaining axioms.

In the interest of clarity the automatic verifica-
tion of a single completely defined modei will be
discussed first; the model search techniques,
which are more involved, are deferred until sec-
tion 3.

2. VERIFICATION OF A FINITE MODEL

This discussion will begin by considering theoret-
ical aspects of model verification before
proceeding with a detailed description of "model
verification runs". First consider how a model
may be specified. A finite model for Grau axioms’
1, 3, 4, and 5, and violating axiom 2, for
example, may be specified by giving a set of ele-
ments and full tables of values for the functions
F and G on those elements. Ome must then verify
that

{1) these values are consistent with axioms
1, 3, 4, and 5, and

{2) that axiom 2 is viclated,

Axiom 2 is an equality. In order for it to be
violated, the two sides must be unequal for some
values (X,Y) and for this it is required that two
elements of the model be demonstrably unequal.,
This is not a trivial matter to arrange. In par-
ticular, A«=B cannot be derived from a set of
equalities in A and B; equality of all elements Is
consistent with any set of positive equalities,
Instead of deriving A-=B one must prove A.=B to be
consistent with the equalities, Consistency can-
not be proven by the refutation techniques of
traditional automated theorem proving, and so new
techniques are needed,

The method of "complete sets of reductions" [3}
enables one to prove consistency of, for example,
A-=B with certain sets of equalities, and thus
provides a starting point for the new techniques.
Essentially, if a set of demodulators [8) form a
complete set of reductions and do not demodulate
A and B to the same term, then A4=B plus those
demodulators form a satisfiable set of clauses,
The procedures given in [3] for generating and




testing complete sets of reductions are easily
performed using the standard paramodulation [7]
and demodulation [8] features of our theorem-
proving program.

Unfortunately not every system of equalities yields
a finite complete set of reductions (by undecida-
bility of the word problem) and even a finite set
may be unmanageably large. Indeed in the ternary
Boolean algebra problems under comsideratiom,
application of the standard procedure for genera-
tion of a complete set of reductions from the
axioms |[3] yielded a set of equalities which ex-
ceeded time and memory limitations. This difficul-
ty was overcome as follows: set up another, in
some sense simpler set of equalities to define a
finite mode}, prove that the simpler equalities
form a complete set of reductions, and finally
prove that the original axioms are mecessarily
satisfied in the model so defined, Two questions
then arise: first, how does one choose the simpler
set of equalities; second, how does one then verify
the axioms? Given a specific model, a simpier set
of equalities could be obtained by removing complex
equalities (e.g. axiom 1¥) and adding simple ground
equalities (e.g. those of Appendix IB) to fill in
for the removed complex equalities in defining the
function tables, Actually the models were found

by the metheds of section 3, which yield simple
equalities anyway.

Verification of the axioms is done automatically

in a "model verification run"; model verification
runs will now be discussed in detail. ‘Io specify
a model of an equational system, one must specify
2 set of elements (considered to be distinct) and
functions on those elements corresponding to the

functions of the system, The following require-

ments must be satisfied:

(1} Each function must be well-defined.
(2} Each function must be closed.

(3} Each axiom of the system must be
satisfied in each instance,.

A function on a finite set of elements may be
specified by simply tabulating its values. The
function tables are supplied to our program in the
form of a set of "function defining equalities";
for an example see the mode! given in Appendix IB.
The value of F(tl1,...tn)), where tl,...tn are
model elements, is then defined to be the result
of demodulating F(tl,...tn), using the set of
"function defining equalities" as demodulators,
For example, in the model of Appendix IB,
F(A,G(A),G(A)) receives the value G(A}; G(G(G(A}})
receives the value G{A}; G{G(A)) {G applied to the
element G(A)) receives the value G(G(A)} because
G(G{A)) does not demodulate. In this way evalua-
tion of functions of model elements is done using
our existing demodulation routine. Observe that
one equality may stand for several function table
entries,

fSee Appendix I

Closure may be tested by forming, for each func-
tion F and each possible n-tuple tl...tn of model
elements, the term F(tl...tn}, and then demodulat-
ing each such term. If only model elements are
obtained, F is closed. Clauses for testing clo-
sure are givem in Appendix IIB.

Well-definedness must hold for functioms of a
model: any function of given model elements must
be given 3 unique value. Equivalently, demodula-
tion of a term F(tl,...tn) where the arpuments are
model elements must yield a unique result no
matter how the demodulation is done. The simplest
way to guarantee a unique result ("unique termina-
tion") is to verify that the “function defining
equalities" form a "“complete set of reductions".
This verification may be done by a paramodulation-
and-demodutation procedure as described in [31.

An alternative method for verifying unique termi-
nation is outlined in Appendix V but has not been
needed for the models examined so far, Note that
even though the axiom system being modeled may not
yield a complete set of reductions, the function
defining equalities for a particular model of that
system can still form a complete set of
reductions.

The condition that each axiom is true in each in-
stance is checked by forming each instance,
demodutating both sides of the equality, and
checking that the two sides become identical in
each case, For example, substituting A/V,

GIG(A)) /W, G(A}/X, A/Y, GIG(A))/Z in Grau Axiom !
yields, after demodulation, A=A, verifying axiom 1
in this instance. A method for generating all the
instances is given in Appendix IIA. Our theorem
prover demodulates each automatically, then tests
each for subsumtion by X=X (equivalently, for
identity of the two sides)., Checking satisfaction
of Axiom 1 formed the bulk of the work of verify-
ing each Grau model; 3 to the 5th power = 243
instances must be checked for a three-element
model, ({The amount of checking can in some cases
be reduced if needed by symmetry and other consid-
erations; see Appendix III}.

Note: If the function defining equalities form a
complete set of reductions, no axiom included
among those equalities {for example axioms 3-5 inm
the model of Appendix IB) needs to be checked for
satisfaction in all instances. Proof: The check
is trivial. Apply the demodulator s=t to the
axiom instance sus=tu giving tu=tu,

This "trivial check" is only valid when the axiom
is one of the function defining equalities and the
function defining equalities form a complete set
of reductions. In checking axiom 1 in the model
of Appendix 1B, for example, axiom 1 must not be
used as a demodulater, because axiom 1 is not one
of the finction defining equalities, As a simple
example of an invalid "trivial check" consider a
model with elements A and B and equalities
J(I(J(X})}=X for all X, J(A)=B, and J{B)=A, with
the latter two forming the complete set of reduc-
tions., J(J(JEX}))=X seems to be satisfied when
the "trivial check® is applied; however when the
latter two equalities are applied to J(J(J(A))), B




is obtained, not A, In doing the "trivial check"
the implicit assumption is made that demodulating
using J(J(J(X)))=X gives the same result as demod-
ulating using the other equalities; this is not
true however because the three equalities together
do not form a complete set of reductions,

3, SEARCHING FOR FINITE MODELS

The NIUTP automatic thecrem prover |4,5,7,8} was
used extensively in searching for the models we
found as well as in verifying them. The model
searches proceeded in three stages: preliminary
paramodulation runs, partial-model runs, and final
model-verification run,

Preliminary paramodulation runs can be used o
derive consequences of the axioms being modeled,
to suggest what equalities do not follow from the
axioms, and to test the effect of adding various
function-defining or other equalities to the axiom
system, For example:

1) The equality F(X,Y,X)=X was derived by
paramodulation from axioms 1, 3, 4, and 5 of
Appendix IA, filling in part of the function table
for F (in any model of axioms 1, 3, 4, and 5J.

2) The failure to derive G(G(X}}=X from the
above system {axioms 1, 3, 4, and 5} suggested |
that models be sought in which G(G(A))~=A for some
A (see Section 4, Example of a Model Search).

3} Addition of the axiom F(X,Y,Z}=F(X,Z,Y) to
the above system was rejected because paramodula-
tion then derived G{G(X))=X (G(G(A))~=A for some A
was desired). '

4) Addition of G{G{G{X}})=G(X) to the above
system yielded no undesirable paramodulants; this
system thus seemed promising and was studied
further by means of "partial-model rums'.

Partial-model rums are begun when a model has been
partially specified: that is, when the set of
model elements (e.g. (A, G(A), G{G{A))}) has been
selected, and most but not all entries in the
function tables have been filled in,

A partial-medel run is similar to a medel verifi-
cation run. The similarities:

A set of model elements is input.
A set of function-defining equalities is input.
Closure, well-definedness, and satisfaction of
the axioms in all instances are tested as in
rodel verification.

The differences!
The function defining equalities do not
completely define the functions., Rather, the

values for some terms (called "undecided terms")
are left unspecified.

The closure test will not indicate closure, but
rather will yield a list of the undecided terms.

In a partial-model Tum, the check for satisfaction
of the axioms in all instances may yield any or
all of the following:

.1} Equality of a model element to itself --
indicating satisfaction of an axiom in the
particular instance tested.

2) Equality of two model elements -- indicat-
ing that the partially defined functions already
do not satisfy the axiom tested,

3) Equality of an undecided term to a model

‘element ~- any such equality is input as 3 func-

tion defining equality in subsequent partial-model
and model-verification runs.

4) More complex ground equalities involving
undecided terms -- may be used to eliminate some
possible values for the undecided terms.

Example of a partial-model run: Axioms I, 3, 4,
and 5 of Appendix I, plus the equality
G{G(G(X})}=G(X), yield the first seven equalities
in Appendix IB; these were used as defining
equalities for a partial-model run, The model
elements A, G{A), and G(G{A)) were also input.

The undecided terms were F{A,G(A},G{A)},
F(A,G{G(A)},G(G(A))), and F(G(G(A)],A,A). The
check for satisfaction of axiom 1 in all instances
yielded (among others) the equalities

F(A,G(G({A)),G(G{A}))=A
F(G(G(A)),A,A)=G(G(AY)
F(F(A,G(A),G(A)),G(G(A)),A)=A

The first two were input as function defining
equalities in subseguent Tuns. The last equality
eliminates the possibility F(A,G{A),G(A))=G(G(A)}
(as this and axiom 4 would demodulate the last
equality to G(G(A))=A indicating violation of
axiom 1). Each of the other two possibilities,
E(A,G(A),G{A))=A and F(A,G(A),G(A)}=G(A}, led to a
valid model, This ends the example.

Finally, when enough jnformation has been gained
from paramodulation and partial-model runs to
specify a likely model completely, that model is
verified in a model-verification run (as described
in seection 2}.

Notes on searching for models:

1} When making a partial-model run, it
appears desirable to instantiate axioms using only
the elements which are expected to be in the final
model. Instantiation using “'undecided terms”
would yield more axiom instances to check and more
complicated ground equalities.

2) A partial-model Tum with too many un-
decided terms may yield an unmanageable quantity
of complex ground equalities. In this case para-
modulation runs might be used to find the conse-
quences of proposed function-defining equalities.




¥hen more function-defining equalities have been
tested, found seemingly acceptable, and added to
the partial model, partial-model runs may again be
attempted,

3) a partial-model run may be considered
"promising" if no equality between distinct model
elements is derived, Each "promising" partial-
model run in the author's brief experience has led
to a valid model, However the author doubts that
a "promising" partial-model run guarantees that
there is a valid model: it might not be possible
to complete the function tables consistently with
the axioms being modeled,

4) It is possible in modeling certain axiom
systems (e.g. semigroups, having associativity as
the only axiom) to include all the axioms, plus
the function defining equalities, in a complete
set of reductions. "In this case none of the
axioms need to be tested for satisfaction in each
instance (see the note at the end of Section 2)
and neither partial-model nor model-verification
Tuns are required; the model search may be con-
ducted using paramedulation rumns only.

4, AN EXAMPLE OF A MODEL SEARCH

Some of the automated theorem prover runs made in
searching for the model of Appendix IB are listed
below to indicate the degree of our reliance on
the computer. As might be expected, the search
includes tests which appear inconclusive or
unnecessary in retrospect.

1} Paramodulation runs proved Grau axioms 4
and 5 (see Appendix I) from axioms 1, 2, and 3,
and incidentally derived G{G(X})=X from axioms 1,
2, and 3.

2} A paramodulation run attempting to prove
axiom 2 from axioms 1, 3, 4, and 5, proved neither
axiom 2 nor GEG(X)}=X. Incidentally, F(X,Y,X)=X
was derived,

The failure to prove axiom 2 motivated the
search for a counterexample. The fact that
G(G(X)}=X was not derived suggested that a
model viclating G(G(X})=X be attempted. Such
a model would necessarily violate axiom 2, It
could be based on one generator (an A for
which G(G{A)+=A) rather than two {as A and B
for which F(B,A,A)~=A), possibly requiring
fewer elements, fewer defining relations, and
less computer time for verification,

3} Paramodulation run seeking consequences of
axioms 1, 3, 4, and §, in conjunction with
G(G(G(X)))=G(X), G(F(X,Y,2))=F(G{X),G(Y),6(Z)),
and F(X,Y,2)=F(X,Z,Y). Axiom 2 was not proved,
but the last of these equalities together with
axioms 3 and 5 yielded G(G{X))=X,

Because 2 model with G(G{A))+=A was being
sought, the last equality was not used for
subsequent models, The possibility that
G{G(B{X)))=G(X) might imply G(G(X))=X was not
tested at this time, (The extra equalities

were added in an attempt to add enough struc-
ture to help get a model, but without satis-
fying axiom 2, Equalities known to be true in
ternary Boolean algebras were added so that
the known structure would be approached; for
example, G(G(G(X))}=G(X) is a weakening of
G(G{X))=X.} .

4) A paramodulation run deriving consequences
of axioms 1, 3, 4, and 5, in comjunction with
G(F{X,Y,Z)}=F(6(X},G(Y),G(2}) and F(A,X,G(6(A}})=A,
derived no. undesirable consequences, The latter
equality, when X=A, is an instance of axiom 4;
when X=G{A) it is an instance of axiom 3; the
author hoped the generalization to X=G(G[A)} as
well, violating axiom 2, would lead to a model
violating axiom 2.

5} Partial-model run, using the first seven
function defining equalities of Appendix IB. The
next two equalities were derived (in checking
satisfaction of axiom 1).

6) Partial-model run, using all but the
eighth equality of Appendix IB. The eighth
equality was derived.

The ninth equality was suggested, before runs
5 and 6 were made, by an examination of the
proof of G{G(A))=A from axioms 1, 2, and 3.
This proof used the instance
F(A,G{G({A)),G(G(A)))=G(G(A)) of axiom 2; if
this term had the value A instead, G{G(A})=A
would not be proven.

7) Model-verification run verifying the model
of Appendix IB,

One goal of future work is to automate more of .
the interactive process illustrated here, conceiv-
ably following the gemeral plan of Fig. 1,

USER INPUTS,

AXIOMS AND
LIST OF ELEMENTS

ADD AN EXTRA DELETE AN ADDED |
l EQUALITY — ""'1"" EQUALITY !
“ PARAMODULAT ION | !
oR
PARTIAL MODEL
RUN
Partial Contra-

diction

Complete Model

Flowchart for Model Search

[

Fig.




5, THE ROLE OF THE AUTOMATED THEOREM PROVER

The theorem prover served as a "logical caleula-
tor", rapidly performing calculations which would
have been laborious if donme by hand. The calcula-
tions were of two types: first, given a set of
equalities, obtain a list of consequences; second,
test the validity of a model or partial model.

The program helped the author to operate effec-
tively with an unfamiliar axiom system.

These benefits were obtained without recourse to
new programming, attesting to the gemerality and
flexibility of the existing theorem proving pro-
gram and techniques,

The program did not decide what sort of model to
seek; this was up to the user, who made the
intelligent decisions, Symmetry and other argu-
ments had to be made by the user (see Appendix
111).

The automated theorem prover is limited in the
number of instances of an axiom which can be veri-
fied. An axiom containing m variables, will when
there are n distinct elements have n to the m-th
power instances to be checked; when n to the m-th
power exceeds 500 to 5000 the cost of computer
time becomes high, Presumably various methods of
checking many instances at once can be developed
to deal with larger models (see Appendix III}; one
would hope that some of these will be general-
purpose rather than problem-dependent.
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GRAL} TERNARY BOOLEAN ALGEBRAS AND
MODELS

APPENDIX I.

A. AXIOMS FOR A GRAU TERNARY BOOLEAN ALGEBRA

The ternary boolean algebra discussed herein was
first presented in [2]., The axioms are:

Axiom 1: F(V,W,F(X,Y,Z))=F(F(¥,N,X),Y,F{V,¥,2))
Axiom 2: F(Y,X,X)=X

Axiom 3; F(X,Y,G(¥))=X

Axiom 4: F(X,X,Y)=X

Axiom 5: F(G{Y},Y,X)=X

Axioms 1, 2, and 3 imply 4 and 5 [1,6]. The tech-
niques of this paper were used to establish that
Axiom 2 is independent of axioms 1, 3, 4, and 5
and that Axiom 3 is independent of Axioms 1, 2, 4,
‘and 5 [6]. Other results, concerning the above
axioms, and discovered using the techniques of

this paper, appear in [6}.

B. A MODEL FOR AXIOMS 1, 3, 4, AND 5 VIOLATING
AXIOM 2

The following form a complete set of reductions,
defining closed functions F and G on three ele-
ments A, G(A), and G{G(A})). All variables are
universally quantified,

F(X,Y,G(Y)) = X (Axiom 3}
F(X, X,¥Y} = X (Axiom 4)
F(G(Y),Y,X) = X (Axiom 5)
©OF(X,Y,X) = X (Consequence of Axioms
1 and 4)
G{G(G{X))} = G{X) Special hypothesis
F{X,6{G{2)),G(Z)) = Implied equality
F(G{2},6{6(Z)),%) = X Implied equality
F(A,G(G(A)),G{G(A}}) = A Implied equality
F{G{G(A)}},A,A) = G{G{A}) Implied equality
F{A,G(A},G(A)} = G(A) Special hypothesis

1

The functions thus defined satisfy axiom I in all
instances, as was demonstrated using our automated
theorem-proving program, The last three equali-
ties violate axiom 2; the model thus shows axiom 2
to be independent of axioms }, 3, 4, and 5.

C. A MODEL FOR AXIOMS 1, 3, 4, ANP 5, VIOLATING
AXIOM 2, BUT SATISFYING G(G(X})} = X

Elements: A, G{A}, C, G(C}

Function defining equalities:

Unit clauses FOX,Y,6(Y)) = % F{XLXY) =X
F{G(Y},Y,X} = X; F(X,Y,X) = X; G(G(X)) = X5
F(X,6(2),2) = X; F(Z,6(2},X) = X}

F(A,C,C) = A and seven variants;

F(A,C,G(A)} = A and seven variants,

The model has 8-fold symmetry given by the permu-
tations (A G(A)), {C G(C)), and (A C}(G(A) G(C)}.
The variants of the last two equalities are ob-
tained by applying these symmetries; thus
F{G{A),C,C) = G(A), The equality F(A,C,C) = A and
jts variants violate axiom 2,

APPENDIX II. CLAUSES USED FOR MODEL CHECKING RUNS

A. GENERATION OF AXIOM INSTANCES

All instances of axiom 1 (distributive axiom}
which may be formed by substituting the elements
A, G(A), and G(G{A)) for the varisbles, may be
generated by forming all hyperresolvents of the
following clauses:

Units Q(A); QUG(AY); Q(G(G(A))); nucleus
AQIY)  AQ(K)  AQ(X)  AQLY) a(2)

or
EQUAL (F(Y,¥,F{X,Y,Z)), F{F(V,¥,X),Y,F(V,%,2}))

The general principles are: Write a clause Q(e)
for each element e in the proposed model. These
clauses serve as hyperresolution electrons. KWrite
the hyperresolution nucleus as the disjunction of
the equality to be instantiated and, for each




variable v appearing in the equality, the literal
~Q(v). Hyperresolution will generate n to the
m-th power instances, where n is the number of
mode! elements and m is the mumber of variables
appearing in the equality being checked,

Note: It would appear that generation of in-
stances could be done almost equally well by Pl
deduction, or by forward chaining using an appro-
priate "nucleus" like

Q(XJ -2 (Q(Y) =P e =P EQUAL{...,...).--)} .

The demodulation (simplification, reduction) of
the instances could then be achieved by any
general system of algebraic simplification., The
author would appreciate hearing from cther workers
who repeat these experiments with their programs.

B. TESTING OF CLOSURE

To test closure of a ternary function F, on ele-
ments A, G(A), and G(G(A})}, form all hyperrescl-
vents of the following ¢lauses:

Q(AY; Q(6(A)); Q(G(G(A})); and nucleus
AG{X)  ~Q(Y} aQ(Z) or Q(F(X,Y,Z)} .

Demodulate each derived clause using the equali-
ties defining F, If each resulting clause is
identical to Q(e) for some element e in the model,
then F is closed. Otherwise F is not clesed: for
example if Q(F(A,G(A),G(A)} is derived and does
not simplify, F{A,G({A),G(A)) has not been defined.
The general principles are: Write a clause Q{e)
for each element e of the proposed model. Write
the nucleus (for an n-ary function F) as:

2Q(V1)... 4Qf¥n) or Q(F{V1,...,Vn}} .

APPENDIX III, METHODS FOR REDUCING RUN TIME OF
PARTIAL-MODEL AND MODEL-
VERIFICATION RUNS

If a fairly large model is being verified, the
number of instances of axioms to be verified may
be reduced by symmetry and other considerations.

For example, the four element model of Grau axioms
1, 3, 4, and 5, described in Appendix IC, has a
set of symmetries mapping any element into any
other. Thus in checking the instances of axiom 1,
only instances in which A is substituted for V
need be checked; instances in which G(A}, C, or
G(C) is substituted for V will behave analogously,
?he clauses used to generate the restricted set of
instances were: :

Qfa}; QGA)); QUC); Q(G{C));

Q2(A); and nucleus

AQ2(V) -Q(W) AQ(X} Q(Y) .Q(Z) or

EQUAL (F{V,W,F{X,Y,2)}, F(F(V,W,X),Y,F(V,¥,2))).

- The use of 4Q2(V) and Q2(A} causes only A to be
substituted for V. The set of instances to be
checked may be further reduced by examining what
happens when V=W or V=G{¥}. When V=W,

12

EQUAL (F(V,V,X},Y,F{V,¥,2)}, F(V,V,F(X,Y,2)))

reduces to EQUAL(F(Y,Y,V),V) by Axiom 4, and
thence to EQUAL{V,V) by F(X,Y,X)=X. Thus (assum-
ing the defining equalities form a complete set
of reductions) instances where V and W are given
the same value need not be checked. Similarly

when V=G(W),

EQUAL (F(F(G(W),¥,X},Y,F(G(W)},¥K,2)),
F(G(W),W,F{X,Y,2)))

reduces to EQUAL{F{X,Y,Z},F(X,Y,2)) by Axiom 5;
again instances satisfying V=G{W) {e.g. G(AY/V,
AW AV, G(AY/W if G(G(A))=A) need not be checked
individually, Thus in checking the four element
model, only A/V with C/W or G(C)/¥ need be checked
in full; this may be done by generating all hyper-
resolvents of the following clauses:

G(A); QIG(AY}; Q€ QGO

Q2(A};

Q3(C); Q3{G(C)); and nucleus

SQ2(V)  -Q3(WM) 4Q(X) sQ(Y) aQ(Z) or

EQUAL (F(V,W,F(X,Y,2)), F(F(V,K,X},Y,F(V,¥,2}))

It is hoped that such tricks can be incorporated
in a general-purpose, fully automated package, but
at present the desired tricks are discovered and
set up by the user. Tricks of various kinds will
presumably become very important in verifying
large models, as the numbers of instances of cer-
tain axioms become encrmous,

APPENDIX IV. CLAUSES FOR GENERATING A LIST OF
ELEMENTS AND A FUNCTION TABLE

To generate a list of elements of a model, gener-
ate all hyperresolvents of the following clauses
and their hyperresolvent consequences (demodulat-
ing each using the function defining equalities):

AQ(X) or QIG(X))
ZQ€X)  AQ(Y) Q(2) or Q(F(X,Y,2)} )
...(one such clause for each function, as in
closure test)
-and units QCA); Q(B): ...
{one such clause for each generator of the
model).

This is useful when a model has been found using
paramodulation runs only (Section 3, Note 4}.

To generate a function table, generate all hyp?r-
resolvents of the following clauses (demodulating
each using the function defining equalities):

QX)) Q(Y) =Q{&) or PF(X,Y,2,F(X,Y,2})

(for a temnary function F}

and units Q(A); Q(G(A)}; ...

{one such clause for each element of the model)},

The derived "“PF" clauses give the function table
entries for “F",




AN ALTERNATIVE METHOD OF CHECKING
WELL-DEFINEDNESS IN A MODEL-
VERIFICATION RUN

APPENDIX V.

If the function defining equalities for a proposed
model do not form a complete set of reductions,
the following test for well-definedness may be
used instead. (The reader is urged to contact the
author for details of this method if desired; .
space considerations do not permit & full presen-
tation here,} First, design the demodulation
algorithm to satisfy two criteria:

1} In demodulating a given term, fully
demodulate each subterm before applying demodula-
tors to the full term., For example, in
demodulating F(G{G(G({A))),A,A), demodulate
G(G{G{A))) to G(A) before applying a demodulator
to the term whose major symbeol is F,

Demodulate a given ground term in the same
way each time it appears., If two demodulators
apply, choose the same one each time, These
criteria insure that demodulation will act as a
well-defined function.

2)

Then check the function defining equalities for
satisfaction in each instance, using the metheod
applied to Grau axiom 1 in Appendix IIA with the
azbove demodulation algorithm.

APPLICATION TO MODELS OF FIRST ORDER
NON-EQUATIONAL SYSTEMS

APPENDIX VI.

The techniques of this paper might be applied to
non-equational systems by (1) rewriting each pred-
icate, "OR", and "NOT" as functions; (2} supplying
function defining equalities for the above which
yield " and "“F" as values, e.g., LT(1,2)=T,
OR(T,F}=T, NOT(T)=F; {3} seeking and verifying
models as in the preceding part of the paper,
omitting T and F from the list of elements, The
author has not tried this technique and makes no
claim for its practical utility,
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Problems arise combining conjunctive subgosls
whose solutions require conflicting bindings.
Using a generalization of substitution, 2 method
is given that allows the combination of the

solutions.

INTRODUCTION

One of the mest productive methods of problem
solving is problem reduction. If a problem can
be split into two independent parts each of which
may be solved separately, finding solutions to
the smaller problems is a much simpler task [1}.
While problem reduction is very basic to human
problem solving, it is perhaps more important to
problem  solving by machines ([2},{3}). The
recursion of algorithms that solve problems by
reducing them to subproblems {to which the
algoritham is reappiied) contributes to the
clarity and conciseness of the algorithm. Also,
present computer programs are not as adept &t
separating out the chaff &s humans are and are
therefore more susceptible to combinatorial
explosions.

Solutions to independent problems are orthogonal
and can be combined without interference. This
is not so if the problems are not completely
independent. I1f two parts of a problem are
somewhat interdependent, it 1is necessary to
confirm that their two solutions can be combined
to return & single solution for the whele
problem. Actually it is not the two parts that
must be independent, it is their solutions.
Since any problem may have a number of different
solutions, for two problems, one pair of solu~
tions may be independent while another pair may
be mutuslly exciusive. (Example - If you need a
number that is both odd and prime you would lose
if you picked the first odd number for one sub-
gogl and the first prime number for the other
subgoal.}

The divide and conquer methodology is central to
the method of theorem proving often referred to
as "natural deduction" ([2},[41,15},{6]). Ome of
its principal proof techniques 1is splitting &
single goazl into multiple goals and later combin-
ing the results. Thus to prove

H=>AAB

This work was supported by National Science
Fnundatiqn Grant HCS 77-20701. '
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the two subgoals
H oz» A and H s> B

zre proved. Unfortunately it is not quite as
simple as this due to the presence of variables
that may occur in H, A, B, or even in higher
subgoals. This paper will examine the problems
of independence of subzoals and their solutions
within the context of a particular methodology of
theorem proving. We will also show how the
solutions must be combined to provide a solutien
of the higher level goal. HMost of the time two
subzoals may be combined vather simply. We
present & theorem that defines the necessary
conditions for this. We alsoc present a theorem
that covers the situations where the two solu-
tions interfere with esch other. In order to do
this we will generalize the concept of substi-
tutions., By combining substitutions & and ) into
forms {called generalized substitutions) such as
(8 v 1) or {6 A ), conflicting solutions mzy be
joined into a single solution,

OVERVIEW

The UT interactive theorem prover is a natural
deduction system developed by our group at the
Bniversity of Texas which has been used over a
number of years to prove theorems in such areas
as set theory, topology, program verification,

and limit theorems of calculus and analysisf* The
following discussion will be presented in terms
of this implementation although the ideas and
techniques extend much further. For a complete
discussion of this prover see [7]. Proofs of the
theorems presented below and further relevant
information may be found in Appendix 3 of {71.

When a closed formula, E, is given to the prover,
it is skolemized into an open (quantifier free)
formula, $. By the nature of the skolemization,
if there exists some substitutiom, &, suclt that
§9 is ground and true then the original formula E
is true. Likewise if there is some set of
substitutions 61, Byr e By such that

(1) selvsez\f... v 58

is both ground and true then E is true.

*% . L.
We will refer to this as our Yeraditional®

prover to distinguish it from one which wses
generalized substitutions.




+

We will use the term ground-true to describe &
formula which is true for every ground interpre-
tation of its free variables. A proof of such a
formula would treat its variables as ground
terms. An example would be the tautology

P(X) -> P{X}.

The goal of the prover is to find some substi-
tutijon 6 such that if § is the skolemized form of
the input then S0 is ground-true. For example,
the skolemized form of

IYIVE(P(X,Y)) -> P{A,Y}]
is
(2) . B(X,Y) -> P(A,Y).

The prover will attempt to find a substitutiom
such as {A/%} which when spplied to (2} results
in a ground-true formula

P{A,¥) -> P(A,Y).

A& zoal such as (2) will be described as provable
if there is some substitution that will make the
goal ground-true.

Consider what happens when the prover is given
the theorem

(3) X P(X)) -> (P{a) A P(B)).
The skolemized form is
P(X) -> P(A) » P(B}

which is given to the routine IMPLY. IMPLY is
the recursive routine thet has the task of
determining & substitution (which IMPLY returns
as its value) which makes its input ground-true.
For this example IMPLY will recur on the two
subgoals

P{XJ) -> P{A) and p{X) -> P(B)

The two subzoals are proved with a substitution
{a/4} for the first and [B/X} for the second.

But is this enough for IMPLY to report it has
proved its original input? The solutions were
not independent a& they both contained the
variable X so they cannot be easily combined. In
fact, ne ordinary substitution exists which makes
the original input to IMPLY ground-true. As we
shall see, in this particular case the conflict
in the substitutions for X does not lead to
problems that prevent the coriginal input from
being proved true but there are non-theorems
whose downfall is due to a similar step in
attempted proefs.

Remember that interdependent goals require some
special manipulations in order for their separate
solutions to be combined to provide & solution
for the combined goal. The prover does check to
see that solutions returned from subgozls are
sucli that they may be combined.
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In doing an ANP-SPLIT such as above, the prover
does not actuslly prove the two subgoals inde-
pendently. Instead, it waits until the first
subgoal succeeds and then uses the result of that
in setting up the second subgoal. This signif-
icantly reduces the chance that the second
subgoal would be proved inconsistently with tne
first., Yf IMPLY is given the goal

(4} i => (A A B)
it will first prove
H => A

using some substitution 8. Then it will form the
second subgoal

H => (B&)

. *
and attempt to prove it.

when the second subgozl returns a substitution of
4, the prover will return the composition of the
two substitutions, 6i, as the substitution tnat
proves the input goal {4},

SOUNDNESS OF OUR TRADITIONWAL PROVER

An input formula is proved by the prover if IMPLY
returns a substitution when applied to the result
of skolemizing the original formula. By using an
inductive proof we will show that IMPLY is sound.
One possible requirement on IMPLY for this is
that if IMPLY returns & substitution for a
formula then that substitution will make the
formula ground-true. The original input to the
prover is proved if the initial (top-level} «calil
to IMPLY returns a substitution satisfying this
requirement since in that case (1) can be easily
established.

Now we need to show that IMPLY actually has this
property. All of the non-recursive IMPLY rules
(ez., matching by unification) trivially satisfy
this requirement, We shall only analyze the
AND-SPLIT rule as all the recursive rules (sudb-
goaling} are similar. In order to prove it we
would need to show that if

(H => Ao
and
(H => BoJr
are both ground-true {inductive hypothesis) then

(H => A A B)3)

* 1f one considers the proof of
dx (PLA) A Q(B) A QLA) -> {P(X) A (X))}

then it should be clear why the © needs to be
applied to the conclusion of the second subgoal.




is #lso ground-true, Unfortunately we need
further vestrictions in order to prove this.

Difficulties arise when the two substitutions
contain 8 conflict such as the ones above ({A/X]
and {B/X]). 1Twe substitutions are in confliet if
they substitute different terms for the same
variable, Problems are also encountered if a
substitution is such that some element of its
domain occurs in its range, that is, if the
composition of the substitution with itsel{
differs from originsl substitution. So we will
put conditions on the solutions returned by the
subgoals .in order to make the theorem provable.

befinition., A substitution 6 is called normal if
the composition of © with itself is & again.
Substitutions of the form (F(X)/X} or {F{Y)/X,
A/Y} are not normal substitutions.

Definition. Two substitutioms © and A are said
to conflict if their domains are not disjeint.

Theorem: If &, A, and &\ are all normal and & and
A do not conflict, then if

(H ~> A)8
is ground-true and
(H =-> B&)x
is ground-true, then
(H -> A A B)ex
is also ground-true.

The condition imposed onm IMPLY (by this theorem)
is that it return a substitution which not only
makes the goal ground-true but also satisfies
certain conditions of form. We then have to
restrict the combining of solutions in an AND-
SPLIT so that only sclutions of the required form
are returned.

Siightly modifying the above theory has allowed
our traditional prover to prove theorems that
require multiple substitutions for a variable.
Previcusly the prover would note conflicts in
substitutions and would halt & proof if the
conflicts might give rise to problems. The above
exanple {3) with the conflicting aubstitutions
was handled by returning the self-conflicting
substitution {A/X, B/X]. The prover would not
allow this substitution te be applied to any
other formula containing an X, By using this
method the prover handles most cases. However,
the simplest example of & theorem the traditional
prover would halt on is

{5) Q(A) A Q(B) -»
IX((P(X) =» P(A} A P(B)) A Q{X}).

The proof of the first half of this conclusion
proceeds a8 in the previous exemple but the
prover halts when trying to substitute {A/X, B/X]
into Q(X).
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GENERALIZED SUBSTITUTIONS

We have developed a theory that allows the prover
to combine any substitutions so prools (such as
the proof of (5)) may proceed despite possible
conflicts. The central idea of the theory is the
notion of generalized substitutions. Basically a
generalized substitution contains both substi-
tutions and information about the relationship of
these substitutions.

pefinition. @ is a generalized substitution if
(1) © is an ordinary substitution, or
{2) & has the one of the forms

{6, v 6,), or (8 A0yl
where 8, and 92 are generalized substitutions.

Definition, If & is z generalized substitution,
then we define 8! by

(1) 8' = ¢ if & is an ordinary substitutien,

(23 (8, v By = (8," & 8,'),

L ™ 1 1
(3) (o) A8y (e1 ve,'l.
Definition. A generalized substitution is ssid

to be a pure disjunction {conjunction} if it
contains no A symbols (v symbols).

Ordinary substitutions are both pure disjunctions
and pure conjunttions.

Definition., If A is a formula and & is a gener-

alized substitution, then A& is the formula

gotten by spplying © from left to right, ie,

{1} A6 is the usual result if & is an ordinary
substitution,

(2) Ale; v 8)) = ABy v Ay,

(3) A(el A 92) = AB, A AD,.,

Properties: If 6 and L are generalized substi-
tutions, A is @ pure disjunction, and A and B are
formulas then X' is a pure conjunction and

(1) (' =6

{2} =-(A8) = {~A)8!'

{3) (A vEB}r=A) VB

(&) (A AB)N= AX' A BAT

€5) (A => B)x = (Ax* -> B}

IMPLY can now be expressed in a form such that it
returns & pure disjunctive substitution that
makes its input ground-true. As before, the
original input to the prover is proved if the
top-level call returns such 2 substitution. We
will again use an inductive proof to show that
IMPLY has the desired properties. The non-
recursive rules of IMPLY pose no problem simce
ordinary substitutions are pure disjunctions.
The proof of the soundness of the AND-SPLIT rule
is typical of the vecursive IMPLY rules.

Theorem: If 6 and } are pure disjunctive gener-
slized substitutions then if 6 is such that

(H =-> A8




.

is ground-true and A is such that
(H -> BB'))

is garound-true then (8% v A} is a pure dis-
junetive generalized substitution and

{H «> A AB)(B) v

is ground-true.

1f IMPLY is given the goal of
{It => A A B)
it will first form the subgzoal
(1 => AJ,

If this subgoal now returns the substitution 8,

18PLY will form the second subgzoal
{H =>» Bo').

1f this supgoal returns the substitution k, IMPLY
will return the substitution of

{gx v i)

for the orizinal zoal.

Tnus the two conflicting solutions of the sub-

zoals generated by the earlier example
P{X} => P{A) A P{B)

can be combined into the single generalized

substitution
(fa/x} v {B/X)).

wien this metiod is applied to the example
QUA) A QCBY =3 X0 (PLX) ~> P(A) A PLB)) A QX))
the second subgoal becomes
Qta) A Q(B} => QIX){{A/X} v {B/X})’
which is just

GlAY & Q(B) => QIX}{A/X] A QUX)B/X)

and is proved.

At first glance it appears that the use of
generalized substitutions increases the amount of

work in the simpler cases one level up. If one
considers
{6} H=> ({PAQ)AR),

and if the substitution proving

H=>7P
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is [A/X] and the substitution proving
Ho=> QLA

is {B/Y) then by combining these two, the g3enor-
alized substitution proving the first subyozl of

(6)
H=>PrG

is (EA/X, B/Y} v {8/¥]). To finish the proof of

{5} we need to prove
H => R({A/X, BfY)} v EB/YTH)!
which is
# => RIA/N, B/Y} & R{B/Y}.
It is easy to see that this is equivalent to

H => R{AS%, B/Y)

the

which is what would have to be proved wusing
Tae

procedure that does not allow conflicts,
prover can detect this rather simply.

CONCLUSION

We have given a proof of the soundness of the
natural deduction prover that has been in use at
the University of Texas for a numbar of years.
By developing generalized substitutions we have

extended the capabiiity of the prover to allow
proofs where conjunective subgoals require
conflicting substitutions. Wwe feel that both the

method of combininz conflicting bindings and the
proef technique presented here may be useful in
other fields.
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GENERAL MATINGS
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%1 Introduction
_Much of the research in automatic
theorem-proving has been focused on de-
veloping efficient methods for deriving
contradictions from sets of clauses,
which represent the conjuncts (disjunc-
tions of literals) of a wff whose matrix
is in conjunctive normal form. The
advantages of conjunctive normal form
were pointed out in [6)}, and incorporated
%?t? the widely studied resclution method

2],

Many theorems of mathematics and
other disciplines lend themselves natur-
ally to representation as sets of clauses,
However, experience [2] with a wide vari-
‘ety of theorems has shown that in many
more cases, the use of clausal form has
serious disadvantages, since the repeated
use of the distributive law
(v (@ AR)=I[{(PVQ) A (PVR)] in-
volved in the reduction to conjunctive
normal form often causes wild prolifera-
tion of literals, -

Example 1 in Figure 1 illustrates
this peoint, Line (1) is the proposed
theorem, (2) is equivalent to its nega-
tion, and {4) is the result of introduc-
ing Skolem functions and dropping
quantifiers, Lines {cl)-(clé6} are the
clauses of the conjunctive normal form of
line (4} (with four tautologous clauses
deleted)., Line (4) contains 12 literals,
but there are 56 literal-occurrences in
clauses {cl)-{clé),

{Example 1 concerns a theorem of
second order logic, but it can be trans-
formed into a theorem of first order
legic in 2 trivial way: Replace each
atom Ft of Example 1 by KFt, where K
is a binary predicate constant, and re-
gard all predicate constants or vari-
ables in Example 1 as individual constants
or variables, However, this transforma-
tion merely clutters the notation, so we
shall continue to use the notation of
Fig. 1 for this example.)

Ancther disadvantage of representing
a wff by clauses is that one's attention,
and methods, tend thereby to be focused
on certain parts of the wff in isolation
from their relation to the rest of it.

_ The use of clauses seems to be fun-
damental to the resolution method, and
variants of it, However, the basic ideas
underlying matings [l} can easily be
applied to wffs not represented by
clauses, It was shown in (1] thatmatings

.

This research was supported by NSF
Grants MCS76-06087 and MCS78-01462.
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Fig. 1
Example 1
Proposed theorem:
{1) 35 ¥x{[Sx Vv Px] A [~ 8x v Qx}}
= Yy{by vV Qv}
Negate (1):
(2) [38 ¥x[[sSx Vv .px] A [~ 5x v Qx]]
Az~ P2 A ~Qz]] VvV [Ty[By ¥ Qv]
A YS Iw([~ Sw A ~ Pw]
V [Sw A ~Qwll].
Skolemize (2):
(3} IVX{[Rx V Bx] A [~ Rx v QX]] A ~ P53
A ~Qal ¥V [¥y[Py VQy} A “S[{~S[£5]
A~ B8]} v{S(£5) A ~Q[L5]1]]
Prop guantifiers:

(4} [(Rx v Px] A [~Rx VY Ox} A ~ Pz
A ~Qa} v{[by VQy] s l[[~5[£f5)
A ~ BI£5)] VIS(£8] » ~ QI£5711}

Clauses: . .

{cl} Rx V Px V By V Qv

{c2) Rx V Bx V ~ S[fS] v Ql£s]

{c3) Rx ¥V Px v ~ P[£5) Vv B(fS]

(c4) Rx V Px V ~ P[£5] ¥ ~ Q(£5]

(e5) ~ Rx ¥V @x V Py V Qv

{c6) ~Rx VQx V ~S[fS] Vv ~ Q[fS]

{c?7) ~RBRx V Qx V ~ P{f5] Vv S5[£5]

(c8) ~Rx VQr V ~P(fS] V ~Q[£5]

(Cg) ~ P_a_ v B’ v Qy

(clo) ~ Pa V ~ S{f5] Vv ~ Q[f£S]

{cll) o~ Pa V ~ P[fS]) Vv S[£5]

(cl2) =~ Pa V ~ P[£8] V ~ Q[£5]

(cl3} ~Qa V Py V Qy

(cl4) ~Qa VvV ~ S[fS] vV ~ Ql£S5]

{cl5) ~Qa Vv ~ P[£S] V S{£S]

(c16) ~Qa V ~ B[£S] V ~ Q[fS]

are naturally induced by resclution-style
refutations. Actually, it appears that
all refutation and proof procedures for
first order logic tacitly involve the con-
struction of matings, which embody much of
the essential logical structure of the
final refutations or proofs. Our present
purpose is to present the logical founda-
tions of refutation procedures based on
matings of arbitrary wffs, and to discuss
one such procedure.
$2 Logical Preliminaries

In our formal development we shall
be concerned with wifs of a2 system of
first order logic whose primitive connec-
tives are ~ (not), a (and), Vv {or), ¥
{for all), and £ (there exists,..such
that}. In examples of wffs, underlined
letters are constants, and other letters
are variables; > and = are to be re-
garded as abbreviations., We use Church's
dot convention [4] for omitting brackets,

We write 8a for the result of applying
a substitution © +to an expression A,
A wff € is in negation nommal form

{pnf),and is a peqgation normal formula
{nnf), iff the scope of each occurrence
of ~ in ¢ 1is atomic, A wff caneasily
be transformed into an equivalent nnf

by using the laws ~w M = M, ~[M A K] =
[~M V ~NI,mfM VN = [~Ma~N,




~ VX M e 8 ~ M, and ~ X M = ¥x ~ M,

In general, the use of normal forms (such
as negation, conjunctive, disjunctive,
and prenex normal forms} provides concep-
tual simplicity which facilitates theo-
retical discussions, but it may make
particular examples more cumbersome.
{Example 1 illustrated this phenomenon
for the case of conjunctive normal form.
Another example is provided by increases
in the degrees of Skolem functions which
may be caused by putting a wff into pre-
nex normal form before Skolemizing.)
However, when one puts a wff into nnf one
can obtain a wff no longer than the orig-
inal one, and having the same essential
logical structure. Therefore, without
any real loss of generality we may often
confine our attention to wffs in nnf.

An occurrence of a quantifier or a
well formed part of a wEf C is positive
(negative] In ¢ 4iff it is in the scope
of an even [0dd] number of occurrences of
~. A wff is universal iff all its uni-
versal guantifiers occur positively, and
all its existential guantifiers occur
negatively, in it. It is well known how
to introduce Skolem functions into a wff
C so as to obtain a universal wff D
{called the Skolemized form of C) such
that € has a model if and only if D has
a model, (We say that a wff has a model
iff its universal closure is satisfiable;
for wffs with free variables, this is not
guite the same as satisfiability, though
the two phrases are sometimes confused in
the literature of theorem-proving.)

Given a wff B which we wish to
show is valid, we let C be_a negation
normal form of ~ B (where B is the uni-
versal closure of B), and let D be the
Skolemized form of €. Then D is a
univerxsal sentence in nnf which has no
model if and only if B iswalid, Thuswe
shall concentrate on the problem of re-
futing universal sentences in nnf.

We say that a wEf F is pormal iff
no quantifier occurrence of F contains
a variable which ocours free in F or
occurs in any other quantifier occurrence
of F., By appropriate alphabetic changes
of bound variables, any wff E can be
transformed (or normalized) into a normal
wff F (called a pnormal form of E} such
that = [E 2 F], (F A means that A is
valigd.}

Let D be a universal sentence in
nnf, We next define the set of amplifica-
tions of D. We say that a wff H! is
obtained from a wff H by guantifier
duplication if H' is the result of re-
placing some wf part of H of the form
Y M by ¥x M A V2 M, If there is a
segquence Dl""'Dn of wEfs (where n3>1)

.such that D, ., is obtained from Dy by

quantifier duplication for each i < n,
we say that D, is obtained from D; by
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Fig. 2

Example 2

(B} ¥x{Cx 2 . Dx A Ex]

>, WylCy o Dy) a ¥ziCz = Ez]
{C) W¥x(~Cx V . DX A Ex] )

A - 3y[Cy A ~Dy) v Zz(Cz , ~ Ez]
(D) ¥x{~Cx V . Dx A Ex)

A . [€a A ~Da}] V [Cb A ~ Eb]
(E) ¥x[~Cx V . DX A Ex]

A Y[~ Cx V ., Dx A Ex]

A . [€a A ~Da] Vv (Cb r ~Eb)
(F) Yw[~Cw V . Dw A EW]

,\Vx[a-g_xv . 2 A'_}:}

A+ [ca A ~Dpal Vv (Ck A ~ EDb)
{(G) {~Cw V . Dw A EW] A [~ Cx V . Dx s Ex]

A« [€a A ~Da] Vv I[CE A ~ EDB]
Mating for G :

[~CwV .DWwaBEwl A [~Cr V. Dx sEx]
i l
f ~ Eb]

|

A . [Ca A ~ Da) v o Ig A
a sequence of guantifier duplications,
Now suppose E is obtained from D by
some sequence of quantifier duplications,
F is a nermal form of E, and G is the
result of deleting all guantifiers of F.
Then G is5 called an amplification of D.
(See Example 2 in Fig. 2.)

Let G be a quantifier-free wif.
We let £(G6) be the set of occurrences of
literals in G, A mating M of G is
a binary relation on (G} such that
there is a substitution € such that
8K = ~ 6L whenever LWK (i.e,, whenever
I. and X are mated literal-occurrences)
In first order logic, whenever such a
substitution 8 exists, there is an
essentially unique most general such sub-
stitution Gm, which we call the substi.

~

tution associated with W™, We say that &
is a refutation mating of G iff G is

false with respect to every assignment of
truth values to atoms that gives opposite
truth values to literals which have mated
literal-occurrences.

Contimuing with Example 2, we present
a mating of G at the bottom of Fig. 2 by
drawing lines between mated literal-
occurrences, This mating is a ‘refutation
mating, as we shall see.

Note that if M is a refutation mat-
ing, then .G is truth-functionally con-
tradictory. = That the converse of this
statement is not gquite true can be seen
from Fig. 3. {Of course, the mating of
Fig. 3 can be extended to a refutation
mating in a natural way.)

The following fundamental resultmay
be regarded as a form of Herbrand's
Theorem:

Fig., 3
[Pxx VvV  Bxyl

|
A [~ Byy V ~ Byx]




Theorem 1. Let D be a universal
sentence of first order logic in nnf, D
has no model iff some amplification of D
has a refutation mating.

$3 Acceptability of Matings

Constructing a mating involves two
processes: (a) the pairing process,

Wwhich decides which pairs of literal-
occurrences to mate, and {b) the unifica-
tion process, which determines whether
There is a substitution which makes mated
pairs complementary. Both of these pro-
cesses involve computational effort, and
each generates information which can be
useful to the other. If the unification
process determines that there is no sub-
stitution which unifies the atoms of a
pair of literals and is compatible with
the mating as constructed so far, thenthe
pairing process need not consider adding
that pair of literals to the mating. On
the other hand, if the pairing process
decides directly that it would not be use-
ful to add a given pair of literals tothe
mating, then the unification algorithm
need not consider whether an appropriate
substitution ‘exists,

Thus, it may often be desirable for
these processes to work in parallel and to
interact with each other, with the balance
of effort being determined by the rela-
tive efficiencies of the algorithms, and
the complexities of their tasks., When
this is done, the pairing process may work
with a set of pairs of literal-
ocourrences which is not known to be a
mating, since it is not yet known whether
an associated substitution exists, Such
a set of pairs will be called a potential
mating. Sometimes, speaking loosely, we
shall refer to a potential mating as a
mating., .

The pairing process will need cri-
teria, which we shall call acceptability
criteria, to decide whether a given mating
is a refutation mating. We shall discuss
one acceptability criterion below, but it
is clear that the problem of devising new
and better acceptability criteria provides
a rich field for future research, It is
useful for acceptability criteria to have
the following properties:
(1} When a mating fails the criteria,
they should suggest ways in which the
mating might profitably be altered.
The criteria should be compatible
with a step-by-step construction of a
mating, so that information acquired
in checking the criteria at cone step
can be used at the next step.
The criteria should be compatible
with a process in which the construc-
tion of a refutation mating is com-
bined with choesing an appropriate
amplification of the sentence to be
refuted. .
We next describe an acceptability

(2)

(3)
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Fig. 4

Rx V Px BY ¥V Qv

~ Rx V Qx
~pa | ¥ |[~sl£8) s(£s)
~Qa ~ plgs] ¥ |~ wlgs)

criterion which is related to disjunctive
normal form, and which is discussed, in
slightly different terminology, by Bibel
[3).

We find it useful to display wifs in
nnf in a two-dimensional format, with dis-
junctions being displayed horizontally but
with conjunctions being displayed verti-
cally. Thus the wff (4} of Example 1 may
be displayed as in Fig. 4.

Motivated by this representation, we
can define a vertical path through a
gquantifier-free nnf G to be a sequence
of members of &£{G} which corresponds to
one of the disjuncts (conjunctions of
literals} in the disjunctive normal form
of G. Intuitively, one chooses a verti-
cal path through G by choosing one dis-
junct {M or N) from each disjuncticn
[M V N] of G, and deleting all parts of
G which are not chosen., One vertical path
through the wff of Fig. 4 has literals
Px, ~ Rx, ~ Pa, ~ Qa, and another has
literals %y, S[£3), ~ Ql£S].

Let he a mating of a quantifier-
free nnf G. We say that W is
p-acceptable (path-acceptable) iff every
vertical path through G contains a
mated pair of literal-occurrences. Every

-acceptable mating is a refutation mating.
The converse is not quite true, since the
mating of Fig. 5 is a refutation mating,
but is not p-acceptable, However the
mating in Fig. 6 is p-acceptable. This
illustrates the following theorem:

Theorem 2. Lat G be a quantifier-
free nnf. G has a p-acceptable mating
iff G has a refutation mating,

Combining Theorems 1 and 2, we have:

Theorem 3, Let D be a universal
sentence of first order logic in nnf. D
has no model iff some amplification of D
has a p-acceptable mating.

Fig. 7 exhibits a p-acceptable mating
of line (4) of Example 1 (which was dis-
played in Fig. 4). Thus we see that line
(3) of Example 1 has no model, and line
(1)} is valid., The advantages of seeking
a p-acceptable mating of Fig. 4 over try-
ing to derive [ from clauses {cl)=-(cl6)
in Fig. 1 seem evident. A computer pro-
gram which tried to refute the clauses of

Example 1 by the methods of [1] repeatedly
Fig. 5 Fig. 6
Px V Ry Bx V By
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ran out of storage space, but a modified
version of it with smaller storage allo-
cations quickly found a p-acceptable mat-
ing for this problem.

§4 A Refutation Procedure
We now provide a general outline of a

refutation procedure based on p-accept-

ability. For the sake of generality and
expository simplicity, the bhasic proce-
dure described here will be rather naive,
although we shall offer a few suggestions
about ways in which it could be made moxe
sophisticated in an actual implementation.

Our main purpose here is to provide a

framework for discussion of ideas, and a

starting point for future research.

In particular, we shall speak as
though unifying substitutions are always
to be directly computed and applied to the
appropriate wffs, 1In an actual implemen-
tation one should consider more sophisti-
cated ways of handling substitutions, as
discussed in [13]), {14}, and [5]. We
have already mentioned that unification
may be performed in parallel with other
processes, and this seems essential when
one deals with wffs of higher order logic,
where unifying substitutions may not be
unique, and the unification algorithm may
not terminate. However, we shall regard
these matters as implementation details
beyond the scope of the present
discussion,

Choices must be made at various
points in the procedure described kelow,
and appropriate heuristies must be used to
make these choices. Although the success
of a working program will depend cxu-
cially on these heuristics, we shall say
little about them here, since not enough
experience is yet available to justify a
preference for one heuristic over another,

The fundamental data structures
involved in the refutation procedure are
the following:

(1) The wEf B to be proved.

{2) A noxrmal universal sentence D innnf
which is produced from B by Step 1
below, and thereafter remains fixed.
D is called the initial wff of the
refutation process,

{3) A normal universal sentence F innnf
cbtained from D by quantifier dupli-
cations and alphabetic changes of
bound variables, F changes as the
procedure progresses, The guantifiers
of F simply serve as markers to
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facilitate additional guantifier dup-
lications, and will be ignored much
of the time, Thus we shall regard F
as an amplification of D. 1In an
obvious sense, each literal-occurrence
of F corresponds to a literal-
occurrence of D,

(4) A mating M of F, and the associsted
substitution Bm.

{5) A connection graph C(DP} of D.
{6} A connection graph C{k,F} of F
relative to .

The connection graphs are defined as
follows, Let F be a nnf, and let M
and N be in £(F)., M and N are
potential mates with respact to a mating
in of F iff some vertical path contains
both M and N, and there is a substitu-
tion ¢ such that of{6.N) = ~ o(% M},

We define " "

c(m,F) = {(M,8) € £(F) x £(F) |
M and N are potential mates
with respect to W}.

This is a binary relation, which can be
represented as a graph, as in [10]. We
define C€{D} to be the connection grarph
of D with respect to the empty mating.

THE REFUTATION PROCEDURE

The refutation procedure is summar-
ized in Fig. B,

We are given a wff B which we wish
to show is valid. _Let C be a negation
normal form of ~ B, where B is the
universal clesure cf B,

step 1, Preprocessing.

(ia) Simplify and normalize C, soas
to obtain a normal sentence ¢! innnf which
is provably eguivalent to C, whileminimiz-
ing the number of literal-occurrences inC',
and also minimizing the degrees of the Sko-
lem functions tobe introduced inStep lb,
Choose between alternative simplified forms.

Thus a wf part of C of the form
Vw ¥x 3y Zz[Pwy A Qxz] should be replaced
by Vw ¥x[3y Pwy A 3z Qxz). However, it
serves no purpose to replace
Yw 3y Fz[Pwy A Qyz] by VYw Zy[Pwy A ZzQvZ],
since in each case the Skolemized form is
Wwi{Pw{fw) A Q(Ew) (aw)].

{1b) skolemize to eliminate exis-
tential quantifiers. To do this, proceed-
ing sequentially from left to right,
replace each wf part 8yM of ¢! by the

result of substituting f£x,...x, for
y in M, where Kysenes¥k, are the free

variables of 32yM, and £ is a newW n-ary
function constant. (If n =0, £ is a new
individual constant,)

{le} Push in universal quantifiers,
so as to obtain a provably equivalent nor-
mal sentence in nnf in which the scopes
of universal gquantifiers are as small as
possible, For example, replace
¥x Vy[Pxy Vv Qy] by Vy[¥x Pxy vV Qv].




Fig. 8

THE REFUTATION PROCEDURE

Given a wif B to prove.
Preprocess, Create D

Create the connection graph C(D).
Let F be D.

1
2
3
f———> 4 Let I =g, Create

ﬁAS Is I p-acceptable? YeE HRLT, B
; AJL is proved,
!

c{m,F).

. .6 Choose a psth P through
F with no mated pa.ir.

7 Does P P29 save useful infor-
contain mation about M.
potential Have all matings

tes? of F been
f yes explored?

8 Mate a pair yes no
of literals y
on P, ‘Backtrack!
Update R

—|{ and C(h,F).

S

10 Duplicate some

L quantifier,
enlarging F.

Thus, if C contains a wf part of the
form ¥x Zy[Pxy AQxy], this is replaced by
Vx[Px(fx) A Qx{fx)] in Step {1b), and by
¥x Px{fx) A Vz Qz{fz) in Step {lc).

(I4) Let the sentence obtained by
Step 1 be called D.

) Step 2, Create the connection graph
ci{p}. '

In an actual implementation of this
procedure, it might be useful not to
create C{D) all at once, but to compute
and store parts of it as the information
is needed. The important point is to
avoid the necessity of computing this
information more than once. A similar
comment applies to C(M,F), below.

Step 3, Let F be D.

Step 4. Let T be the empty mating
of F. Create C{m,F), using C(D).

Step 5. Test My is I p-accept-

able? 1If so, the refutation is complete.
Otherwise, continue to Step 6,

We remark that since the number of
vertical paths in a wif can be quite
large, considerable attention should be
paid to the efficiency with which this
test is carried ocut, O©Of course, one need
not examine the vertical paths separately
and completely. AsS so0Cn as one has found
a pair Of mated literals on a sub-path of
a vertical path, one can exclude from fur-
ther consideration all extensions of that
sub-path. Also, since M is tested and
constructed in stages, information about

which vertical paths contain mated pairs
can be saved from one stage to the next,
At each stage, all one really does is
search for one new vertical path which
does not contain any mated pair, starting
where one left off at the last stage.
vVarious methods from propositiconal
calculus can be used to temporarily sim-
plify F as the construction of & pro-
gresses, and we digress briefly to dis-
cuss one of these., Let M be the wif

(fLy A Py) VeV (L, A P 1) A
((L] Ao Ly A Q) VR)

where n 2 1, the L.

als, and the Pi’ g, and R

wEfs: in particular, they may be the
empty conjunction & (which is true), or
the empty disjunction O (which is false).
tet N be the WEf

{{Ly A Pyl VeV (L, A P.1) AR Suppose

F contains an occurrence of M, and Fr
is optained from F by replacing that
occcurrence of M by an occurrence of K,
{See Fig. 9) (Note that if LJ!_ = ~1L;

for each i, then F s F*,) Let
be a mating of F such that for each
igmn KM L; or Lim Ly, We may regard

Z(F*) as a subset of I(F}, and define

and Li are liter-
are arbitrary

‘W  to be the restriction of T to E{F*).,

Then m* is a mating of F*, It is easy
to see that there is a p-acceptable matirg
of F which is an extension (superset)
of W if and only if there is a p-accept-
able mating of F* which is an extension
of R*, Thus we may reduce F and [ to
F¥ and N* in our search for a p-accept-
able mating (though F and ™ may have
to be restored later if no p-acceptable
extension of [ is found).

0f course, we shall feel free to use
elementary laws of conjunction and dis-
junction, such as commutativity, associa-
tivity, v DO =M, KA O =0, and

Fig. 9
F contains F* contains
'.L - ] B ]
1 v Ln Ll Ln
p vaaVoip P VeuaV 3
1 n 1 0
e
L
' v R R
1
Ln
-Q -t




Fig. 10
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| - ] [ ] ;
P u v v u
~ ~ v j
[wq]_w_ av |y I O I = I
Mals EM, Using these laws and reduc- acceptability. We add a pesir of literals
tions of the sort just discussed, we can toc M because it makes . closer to
cften drastically simplify F, or even being acceptable,
reduce it to[] , which has a p-acceptable Of course, if an inappropriate choice
mating since it has no vertical paths. is made at Step 8, the system will event-
This is illustrated in Figures 10 and 11, ually have to backtrack. To alleviate
where we assume complementary literals are this problem, more sophisticated methods
mated. In both figures (a'} is obtained of deciding how to alter N than those
from {a} by elementary laws, {b) is ob- implicit in Steps 6-8 may be needed. We
tained from (a') by a reduction, etc. briefly mention one such method, which
Dotted lines surround the parts of Fig. 1l was suggested by Eve Cohen.
involved in the reduction steps., Fig, 10a Let us say that we fix a vertical
represents the mating for Example 2 at the path P by mating a pair of literal-
bottom of Fig, 2, and Fig. lla represents occurrences on  P. While there may be
the mating for Example 1 in Fig. 7. many ways of fixing a given path, some of
Step 6., Choose a vertical path P these may not be compatible with any way

through F with no mated pair.

of fixing another path (because the asso-

Presumably at least one such path can ciated substitutions are not compatible),

be found in Step 5., However, it may be and so should not be used. By considering
worthwhile to choose this path carefully. all possible ways of simultaneously fix-
For example, with the aid of the connec- ing all paths in a set of vertical paths,
tion graph C(Wh,F) one can seek such a starting with a unit set and progressively
path with a minimum number of pairs of enlarging it, one can eliminate many
potential mates, inappropriate ways of fixing paths. If,
Step 7. 1Is there at least one pair within the computational resources allo-
of potential mates on P? If so, go to cated, one c¢an eliminate all but one way
Step 8. 1If not, go to Step 9, and give P of simultaneously fixing all paths in the
high priority for consideration by Step & set, one can fix all those paths simul-
at later stages of the procedure, taneously without fear of error.
Step 2. Choose a pair (M,N) of poten We c¢an also apply a heuristic to
tial mates on P, and replace W by Steps B and 6 which is analogous to the
U {{M,N}}. {We call this process mating Set-of-Suprort strategy [15] for resolu-
M and N.) Adjust &y and C(m,F) tion, Not all literal-occurrences need

appropriately, Return to Step 5,

have mates in a p-acceptable mating

We remark that in Steps 5-8 we simply {particularly if inappropriate ¢quantifier
check whether I is acceptable, and change duplications have occurred), but it is

it if it is not, The particular way we sometimes clear from the statement of a
change it is guided by our criterion of theorem that certain literal-cccurrences
Fig. 11

(a) (a') (b)
r ; ' ~ P w vy
~ r
%
~ ~ g W
~ ~ W

H
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must have mates, or that most literal-
occurrences in a certain set must have
mates. In such cases, high priority
should be given to mating such literal-
occurrences.

Step 9.
explored?

If so, go to Step 1l0. If
track and try another mating,
case, record information about the current
mating which may eventually be useful in
choosing a gquantifier to duplicate, or in
reconstructing this mating after a quanti-
fier has been duplicated.

Step 10. Choose a gquantifier of F,
duplicate it, normalize the resulting wff,
and call it F. Go to Step 4.

The choice of a quantifier to dupli-
cate should be made as intelligently as
possible, since every gquantifier duplica-
tion enlarges the wff with which the mat-
ing program must deal. Nevertheless, an
inappropriate guantifier duplication does
not prevent an acceptable mating from
eventually being found, so we never back-
track past this point. Of course, the
heuristic used to choose quantifiers to
duplicate should be designed so that the
procedure will be complete.

Sometimes it may be desirable to go
from Step 9 to Step 10 even if further
matings of F remain te be explored, or
to go from Step 10 directly to Step 7,
and continue work on the current mating in
the enlarged wff. Of course, such acts
may complicate backtracking, and necessi-
tate special measures to assure the com-
pleteness of the procedure,.

Have all matings of F been
not, back-
In either

§5 Remarks

A computer program based on these
ideas has been constructed, largely by
Eve Cohen. It handles sentences of type
theory as well as those of first order
logic, but of course in automatic mode it
is not logically complete for type theory.
with its aig various heuristics for the
refutation procedure are being
investigated.
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NON-MONOTONIC LOGIC 1

(Extended Absiract}
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Abstract: “"Non-menotonic" logical systems are logics in
which the introduciton of new axioms can invalidate old
theorems. Such logicy are very important in modehng the
beiiefs of active processes which, acung in the presence of
incomplete information, must make and subsequently revise
predictions in light of new observations. We present the
mativation and history of such logics. We develop model and
proof theories, a proof procedure, and applications for one
important non-monotonic logic, The main results are the
compieteness of the non-monotonic predicate cakculus and the
decidability of the non-monotonic sentential calculus, We also
discuss characteristic properties of this Jogic, This paper is an
abbreviated version of MIT Al Memo 485, in which all proofs
are given, The full paper also discusses the relationship of
nen-~monotonic logic 1o stronger logics, logics of incomplete
iforeation, and truth maintenance systems.
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The Problem of Incomplete Knowledge

The relation between formal logic and the operation of the
mind has always been unclear, Some of the more striking
differences between properties of formal logics and mentai
phenomenology occur in situations dealing with perception,
ambiguity, common-sense, causality and prediction. One
common feature of these problems is that they seem to involve
working with intomplete knowledge, Perception must account
for the noticing of overicoked features, common-sense ignores

myriad special exceptions, assigners of blame can be misied,
and plans for the future must tonsider never-to-be-realized

contingencies, [t is this apparently unavoidable making of
mistakes in these cases that leads to some of the despest
problems of the formal analysis of mind.

Some studies of these problems occur in the
philosophical literature, the most relevant here being Rescher's
T1964] analysis of coumterfactual conditionals and belief-
contravening hypotheses. In artifiesal intelligence, studies of
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perception, ambiguity and common-sense have led o
knowledge representalions which expliatly and Iimphatly
embody much information azbout typical cases, defauls, and
methods for handling mistakes, [Minsky 1974, Rester 1978]
Studies of probiem=-solving and acting have attempted
representing predictive and causal knowledge so that decisions
to act require anly limited contemplation, and that actions,
their variations, and their effects ¢an be converently
described and computed. {Hayes 1970, 1971, 1973, Doyle 1978)
Indeed, one of the original names applied to these efforts,
“heuristic programming”, stems from efficiency requirements
forcing the use of methods which occasionally are wrong or
which  fail,  The possitilny of failure means that
formalizations of reasoning in these areas must capture the
process of revisions of perceptions, predictions, deductrons and
other beliefs,

in fact, the need to revise beliefs alsio occurs in
deductive systems working within tradstional logics. Much
work has been done on mechanized proof techniques for the
first-order predicate calculus. [Robinson 1965, Nevins 194,
Moore 1975} Incomplete information is represented in these
systems as disjunctions of the several possibilities where the
individual disjuncts may be independent of the axioms being
used, that 15, cannotl be proven or contradicted by arguments
from the axioms. Thus, prool procedures engage in case-
splitting, in which disjuncts are considered in a case-by-case
fashion, At any given time, the proof procedure will have
some set of current assumptions, from which the current set of
formulas has been derived. If failures in the preof attempt
lead to investigating new sphts, and so change the set of
current assumptions, the current set of derived formulas must
also be updated, for it is the current sel of formulas on which
the proof procedure bases its actions,

Classical symbolic logic facks tools for describing how
to revise a formal theory to deal with inconsisiencies caused by
new informaton, This lack is due to a recognition that the
general problem of finding and selecung among aliernate
revisions 15 very hard. {For an attack on this problem, see
Rescher [1964). Quine and Ullian [1978] survey the
complexities.) Although logicians have been able to ignore
this problem, philosophers and researchers in artilicial
intelfigence have been forced to face it because humans and
computational models are subject to & continuous flow of new
information. One imporiant insight gained through
computational experience is that there are at least two different
problems involved, what might be called “routine revision”
and "world-model reorganizaton”.

World-model reorganiration is the very hard
problem of revising a complex model of a situation when 1t
turns out to be wrong. Much of the complexity of such models
usually stems from parts of the model relying on descriptions




of other parts of the model, such as inductive hypotheses,
tesamony, analogy, and intuition. An example of such large-
scale reorgamization would be the revision of a Newtontan
cosmotogy to account for perturbations in Mercury's orbit.
Less grand examples are children’s revisions of their world -
mocdels as discovered by Piaget, and the revision of one's
opinion of a friend upon discovering his dishonesty,

Routine revision, on the other hand, is the problem
of maintaining a sel of facts which, although expressed as
universally true, have exceptions. For example, a program
may have the belief that all animalks with beaks are birds.
Teling this program about a platypus will cause a
contradiction, but intuitively not as serious a contradiction as
ihose requiring total reorganization, The relative simplicity of
this type of revision problem stems from the statement itsefl
expressing what revitions are appropriate by referring to
possible exceptions. Such relatively easy cases include many
forms of inferences, defaull assumptions, and observations.

Classical logis, by lumping ali contradictions
together, has overlooked the possibility of handling the easy
ones by expanding the notation in which rules are stated,
That is, we could have avoided this problem by stating the
belef as "}f something is an animai with a beak, then unless
proven otherwise, it Is a bird" 1f we aflow statements of this
kind, the problem becomes how to coordinate sets of such
rules. Each such statement may be seen as providing a piece
of advice about belief revision; for our approach to make
sense, all the Intle pieces of advice must determine a unique
revision. This is the subject of this paper. OF course, even If
we are successiul, the world-model reorganization problem will
sull be unsolved, But we hope factoring out the routine
revision problem will make the more difficult problem clearer.

Approaches to Non.-Monotonic Logic and the Semantical
Difficulties

The study of the problem of formalizing the process of
revision of beliefs has been almost completely confined to the
practical side of aruficial intelligence research, where much
work has been done. [Hewitt 1972, McDermott 1374, Staliman
and Sussman 1977, Doyle 1978) Theoretical foundations for
this work have been lacking. This paper studies the
foundations of these forms of reasoning with revisions which
we lerm non-monofonic logic. :
‘T'raditional logics are called monotonic because the
theorems of a theory are always a subset of the theorems of
any extension of the theory. {This name for this property of
classical logies was used, after a suggestion by Pratt, in
Minsky's (19741 discussion. Hayes (1973 has called this the
“extension® property.) In this paper, by theory we will mean a
set of axioms, A more precise statement of monotonicity is
this: If A and B are two theories, and A & B, then
Th{A) € Th(B}, where Th(S) = {p: Stp} is the set of
theorems of 5. We will be even more precise about the
definition of F later. .
Monotonic Jogics lack the phenomenon of new
information leading to a revision of old conclusions. We
.obtain nen-monotonic logics from classical logics by extending
them with a modality ("consistent”™) well-known in artificial
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inteligence circles, and show that the resulung logics have
well-founded, if unusual, model and proof theories We
introduce the proposiion-forming  modality M (read
“eonsisient”). Informally, Mp is lo mean that p is consistent
with everything believed, (See [(McCarihy and Hayes 19691)
One smali theory employing this modahty s

{1)  noon A Mlsun-shimngl > sun-shming
{2) noon
(3)  eciipse @ ~sun-shining,

In which we can prove
(¢} sun-shining.
i we add the axiom
(S} echpse
then (4) is inconsistent, so {4) i3 nol a theorem of the
extended theory.

'he uwse of non-monotonic techniques has some
history, but unti recently the intuitions underlying these
techniques were inadequate and fed to difficuities involving
the semantics of non-monotonic inference rules in certain cases.
We mention some of the guises in which non-monotonic
reasorung  methods  and  belief  revising  processes have
appeared,

le PLANNER [Hewit 19723, a programming
language based on a negationless calculus, the THROT
primitive formed the basis of such reasoning. THNOT, as a
goal, succeeded only if s argument faited, and failed
otherwite. Thus if the argument 1o THNOT was a formula to
be proved, the THNOT would succeed only if the attempt lo
prove the embedded formuiz failed. In addition to the non-
monotonic primitive THNOT, PLANNER employed antecedent
and erasing procedures to update the data base of statements
of beliefs when new deductions were made or actions taken.
Unfortunately, it was up to the user of these procedures lo
make sure that there were no circular dependencies or mutual
proofs between beliefs, Such circularities could lead to, for
example, errors of groundiess belief {due to two mutually
supporting beliefs) or non-terminauing programs {a more
technical but no fess irritating problem).

Two related forms of non-monotonic deductive
systems are those described by McCarthy and Hayes L1969
and Sandewali [1972), McCarthy and Hayes give some
sndications of how actions might be described using modal
operators like "normally” and “consistent”, but present no
detailed guidelines on how such operators might be carefully
defined. Sandewall, in a deductive system applied to the
frame problem (which is basically the problem of efficiently
representing the effects of actions; see [Hayes 19131) used a
deductive representation of non-monotonic rules based on a
primitive called UNLESS. This was used to deduce conditions
of situations resulting from actions except in those cases where
properties of the action changed the extant conditions. Thus
one might say that things retain their color unless painted.

Sandewall's interpretation of UNLESS was in accord
with then current intuitions: UNLESS(p) is true if p 1s not
deducible from the axioms using the classical first-order
inference rules. Unfortunately, this definition has several
problems, as pointed out by Sandewall. One problem i3 that it
can happen that both p and UNLESS{p) are deducible, since
from a rule like “from UNLESS(C) infer D" P can be




inferred, but at the same ume UNLESS{D} is also deducible
stnce D is not deducible by classical rules. These problems are
partly due to the dependence of the notion of "deducible” on
the intention of deduction rules based on “not deducible”,
This question-begging deftnition leads to perplexing questions
of behefs when complicated relations beiween UNLESS
statements are present. For example, given the axioms

A

A A Uniess(B) o C

A A Unless(C) 2 B,
we are faced with the somewhat paradoxical situation that
cither B or C can be deduced, but not both simultaneously,
On the other hand, in the axiom system

A

A A Unless{B) > C

A A Unless(C) o D

A A Untess{D} o E,
one would expect 1o tee A, C and E believed, and B and D
not beheved.

One might be tempted to dismss these anomalous

cases a3 uninteresting. In fact, such cases are not perverse;
rather, they occur naturally and are very important in many
applications. One common way they are introduced s by
employing assumptions which require further assumptions to
_be made. Of course, such hierarchical relations between
choices can be avoided in any fixed theory by rephrasing the
system i terms of one universal state variable, but such a
solution 1s practically undesirable and inefficient. Instead, it is
necessary to employ systems which aflow such patterns of
dependency relationships to occur,

Spurred by Sandewall's presentation of the problems
arising through such non-monotonic inference rules, Kramosil
[1975] considered sets of inference rules of the form

"From ¥p, ¥q, infer Fr*,

where b and H are i1okens of the meta-language and the
number of antecedents can be arbitrary. Kramosil defined the
set of theorems in such a system as the intersection of all
subsets of the languapge closed under the inference rules. He
noted that this set may not iself be closed under the inference
rules, and showed that in the special case in which the
inference rules preserve truth values (that is, are effectively
monotomic) that if the set of theorems of the monotonic
inference rules alone is also closed with respect to the non-
monotonic inference rules, then this sel is the set of non-
monotoric theorems, Kramosil's conclusion was that a set of
inference rules defines a formalited theory (one in which all
formulas have a well-defined truth value} if and only if this
same theory is that of the monotonic inference rules alone,
which he interprets to mean that the non-monotonic rules are
either useless or meaningless.

As we will show in this paper, Kramosil's
interpretation was too pessimistic with regard to the possibility
of formalizing such rules and their unusual properties. As we
have argued above, the purpose of non-monotonic inference
rules js not to add certain knowledge where there is none, but
rather 1o guide the selection of tentatively held beliefs in the

. hope that fruitful investigations and good guesses will result.
This means that one should not ¢ priori expect non-monotonic
rules to derive vaiid conclusions independent of the monotonic

28

rules, Rather one should expect to be led to a set of behefs
whith while perhaps eventually shown tncorrect  will
meanwhile coherently guide invesugations.

Non-monotonic snference rules need not appear n
the exphicit forms discussed by Kramosil. Many authors have
described artificial inteligence programs which exhibn non-
monotontc  behavior only impheitly.  Non-monotormicity 10
these systems stems typically from extra-logical devices like
conflict resolution strategres, which use  production-rule
ordertngs and specificity criteriz to deterrmine the next system
action. Pratt [1977] and Joshi [19783 term this property of
their systems "non-monotonicity™

One class of non-monolonic inferences constst of
what might be called “"minimal" inferences, in which 2
mimmai model for some set of beliefs 35 assumed by assuming
the set of beliefs to be 2 complete description of a state of
affairs. Joshi and Rosenschein [1975) describe a parual-
matching procedure based on the operation of taking least
upper bounds in 2 lattice of sets of beliefs, This has the effect
of assuming just enough additional information to aliow a
desired partsal match to succeed. McCarthy [1977] outlines a
procedure called “circumscripuion”, m which the current
partial extension of some predicate is assumed 1o be the
complete extension, Of course, new examples of the
predication can invahdate previous completeness assumptions.
Reiter E1971] analyzes the related techmique of assuming false
all elementary predications not explicitly known true, He
otitlines some conditions under which data bases remain
consistent under this “"closed world assumption”, and shows
certain forms of data bases to be naturally consistent with thus
assumptlion, However, the closed world assumption does not
seern to allow for any locality of definition of defaulis, since it
apphes this assumption to all primitive predicates, and does
not allow defaults applied to defined predicates.
Circumsceription, on the other hand, would seem to be
applicable to any predicale whatever. Although they describe
tools for non-monotonjc reasoning, none of these authors
discuss the problem of revision of beliefs.

These problems were mostly resolved 1n the Truth
Maintenance System (TMS) of Doyle [1978] and subsequent
related systems [Londen 1977, McAllester 13781 in which each
statement has an associated sel of justifications, each of which
represents a reasen for holding the statements as a behief,
These Justifications are used to determine the set of current
belicfs by examining the recorded jusnufications to lind well-
founded support {non-circular proofs) whenever possible for
each belief. When hypotheses change, these justilications are
again examined to update the set of current beliefs, This
scheme provides a more accurate version of antecedent and
erasing procedures of PLANNER without the need to explicitly
check for circular proofs. The non-monotenic capabihty
appears as a type of justification which is the static znalogue
of the PLANNER THNCT primitive. Part of the justification
of a belief can be the lack of valid justifications for some
other possible program behef. This allows, for example, belief
1n a statement to be jusufied whenever no proof of the
negation of the statement is known. This representation of
non-monotonic justifications, in combination with the belef
revision algorithms, produced the first system capable of




performing the rouune revision of apparently inconsistent
theories into consistent theories, Part of this revision process is
a  backtracking  scheme  called  dependency-directed
backtracking. (Staliman and Sussman 1977 We will analyze
this system in more detail later, but first we provide some
theoretical foundations for this work.

in outline, our analysis of these questions will
proceed as follows. We first define a standard language of
discourse  including  the non-monotonic  modality M
("consistent”}. The semantics of the language is bated on
models constructed from fixed points of a formalized non-
monotonic proof operator. Provability in this system is then
defined, and a proof of completeness for this system is
presented. This is augmented by a proof procedure for a
restricted class of theories and an amalysis of some of the
structure of models of non-monotonic theories.

Linguistic Preliminaries

We settle on a language L which will be the language of all
theories mentioned in the following. L has an infimite number
of constant letters, variable leiters, predicate letters, and
propositional constant letters. The formation rules of the
language are as follows: )

The atomic fermulas of L are the propositional
constam fetters and the strings of the form g(xl,..,xn) for
predicate jetter g and variables or constants Xy, ~ , Xp. The

formuias of L are either atomic formulas or, for formulas p, q
and varmable lerter %, strings of the form Mp, -p, p>q, and
Yxp. We use the usual abbreviations of pAq for ~[p=4],
pvq for ~p>q, 3xp for ~Yx-p, and abbreviate ~-M-p as Lp.
A statement is a formula with no free variables, The wusual
criteria for determining free variables apply (see [Mendelson
19641). in addition, a variable x is free in Mp if and only if
% is freein pu

In this paper, the letters G, D, E and F will be used

as syntactic variables ranging over propositional constant .

letters. The letters p, q and r will be vsed for formulas.
Implicit quasi-quotation is used throughout.

The inferential system used defines a first~order
theory 10 be a set of axioms incloding the following infinite
class of axioms: For all formulas p, q and r:

(6) {1) polgopld .

{ii) [p=lqorlinllpoqlalqordl

(1it} [~goplIall~goplagl

(1v) ¥xp{x)=plt)
where p(x} is a formula and t 15 a constant or a variable free
for x in p(x} and p(1) denotes the result of substituting t for
every free occurrence of x in p(x}, and

(v) ¥Yx[poql=[po¥xql
if p 15 a formula containing no free occurrence of x. {These
axioms are from [Mendelson 19641} These are the logical
axioms, All other axioms are called proper, or non-logical
axioms. The theory with no proper axioms is called the
predicate calewdus (PC). (Note that this theory also contains
strings contanung the letter M, so it is actually not strict PC.)
‘The sentential caleulus {SC) consists of axioms which are
anstances of (1), (ii} and (1) only, A theory consisting only
of the sentential calculus plus a finite number of statements is
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called a statement theory.
fn this paper, the letters A and B will be used 10

stand for theorses.
Proof-Theoretic Operators

The monotonic rules of inference we will use (also from

[Mendelson 19641) are

{7)  Modus Ponens: from p and p2q, Infer q
Generalization: from p, infer Yxp.

i 3 15 a set of formulas, and p follows from § ard the axioms

of A by the rules {7), we say Sk p. We abbreviate Fpc by b

alone. We define Th(S} = {p: Skp}.

The particular snference rules {7} are not very
wnportant. Later in the paper, when we concentrate on
statement theories, the rule of generalization will be dropped
without much fanfare, All that s important is that the
operator Th have the following properties, which together are
catled monsfonicity: N
(8) (1) AcTh(A)

(it} If A £ B, then Th{A) & Th(B)},
and the property {9) of idempotence
(9 Ta(Th{A)) = Th(A).
Clearly, any classical inference system satisfies these condstions.
Condtion (9) can also be viewed as a fixed point equation,
stating that the set of theorems monotomcally derivable from a
theory 1s a fixed point of the operator which computes the
closure of a sel of formulas under the monotonic inference
rules. A weli-known property of the monotonic inference rules
15 that Th{A} I the smaliesst fixed point of this closing
pracess; i fact, that Th{A} is the intersection of all § such
that A & S and Th($) =§,

In order to deal with non-monotonic logic, we need
a new inference rule iike this one (which we wil take back
immedsately) :

{10) "It Wy ~p, then k, Mp"

That is, if a formula's negation is not derivable, it may be
mnferred to be consistent. As 1t stands, however, this rule 15 of
no value because it is circular, "Derivabie” means “derivable
from axioms by inference rules”, so we cannot define an
inference rule 1n terms of derivability so casually,

Instead, we retain the definition of F as meaning
monotonic  derrvability, and define the operator NM as
follows: for any first-order theory A and any set of formulas
S & L {L, recall, is the entire language), let
(i1} NMA(S)=Th(AUAsA(S)),
where Asy(8), the set of assumprions from 3, is given by
(12)  Asp(S) = {Mq: q €L and ~q #3} - Thi{A}).

Notice that theorems of A of the form Mq are never counted as
assumptions. NM, takes a sei 5 and produces a new set which
includes Th{A) but also includes much more: everything
provable from the enlarged set of axioms and assumptions
which is the original theory together with all assumptions not
ruled out by 5. We would iike to define TH(A), the set of
theorems non-monotonically derivable from A, by analogy

‘with the monotonic case as

{13) "TH(A) = the smallest fixed point of NM 4"

This "definition” tries to capture the 1dea of adding the non-
monotonsc inference rule {10) to a first-order theory A. This




18 plausible, since it demands a set such that ali of its elements
may be proven from axioms and assumptions not wiped out
by the proofs. Unfortunately, there 5 in general no
appropriate {ixed pant of NMg. It can happen that 2 theory
has no fixed point under the operator NM,. Even if there are
fixed points, there need not be a smallest {i1xed point,
For example, consider the theory T1 obtained as

{14) Tt = PC w { MC2-D, MD2-C },

where C and D are proposiional constants. NMTI has two

fixed points, which can be calied Fi and F2. F1 contains ~C

but not ~D, and F2 contains ~D but not ~C. Since ~D is not in
F1, MD 1s1n Fl, and s0 ~C is in FL. Similarly, the presence of
~D in F2 keeps =C out and MC in F2. The problem is that
neither FInF2 nor FIuF2 is a fixed pont of NMTI'. Since
neither =C nor =D & in FinF2, MC and MD are both in
NM((FInF2), so ~C and <D are in NMp(FInF2), so
FirF2 # NMp(FInF2), Similarly, both <C and <D are in
NM-{FIuF2}, so applying NMpy to the union results in 2
smaller set. So in this case there is no natural status for ~C
and -~D.

An example of a theory with no fixed point of the
corresponding operator 1s the theory T2 obtained as
(15} T2=PCu{ MCo-C ).

In this case, NMpg has no fixed point, since aiternate
applications ol the operator to any set produce new sets in
which either both MC and =C exist or neither exist.

Therefore, we must accept a somewhat less elegant
definition of TH. Let us define TH as follows:

(16} TH(A) =ﬂ({L}U{S=NMA(S)=S}).

That s, the set of provabie formulzs is the intersection of all
fixed ponts of NM,, or the entire language if there are no
fixed points, We will use the abbreviation Akp to indicate
that p € TH{A}Y, With this definition, neither MG nor MD is
a theorem of TL in (14), but MCvMD is. In the following,
we will abbreviate {S: NM,(S) =5} as FP(A), and
{somewhat abusing the terms} cali the elements of this set
fixed points of the theory A,

This definiion of the provable statements is quite
similar wn some respects to the deflinition of compatibility-
restricted entailment given by Rescher (195642, In that system,
a set § of formulas is said to CR-entail 2 formula p if p
follows in the standard fashion from each of one or more
“preferred” maximal consiient subsets of S, In the present
case, we obtain the preferred subsets of formulas as fixed
ponts of the operator NMy (the "compatible subsets™}, but in
contrast to normal deducibility where the empty set always
suffices, there need not be any such subsets. This case
produces the entire language as the set of prevable formutas
by vacuous lulfdiment of the condition of derivability.

One unusual consequence of this definition of
provability is that the deduction theorem does not hold for
non-monotonic logic, For example, while { C } F MLC, it it
not true that b COMLC. This failure of the deduction theorem
is to be expected, however, since the non-monotonic

. provability of a formuls depends on the completeness of the
set of hypotheses, that is, on the fact that no other axioms are
available. The deduction theorem, however, would If valid
produce imphications valid no matter what other axioms were
added to the systemn, even if these axioms would jnvalidate the
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completeness conditton  used in the dertvation of the
tmplication.  One shouid note that akthough the deduction
theorem does not hold in general in non-monctonic logic,
there are many particular cases in which 1t does hold. For
inuance, if some conciusion follows classically from some
hypotheses, then the expecied implication wil alsie hold, In
addiuon, not all properly non-monotonic theories are such
that the deduction theorem fails, It 15 an interesting open
problem to characterize the precise cases In which the
deduction theorem 1s valid 1n non-monotonic theores.,

So far, we have defined "provability” without
defiming "proof”. For a formula to be provable an a theory, 1t
must have a standard proof from axioms and assumptions in

- each fixed point of the theory, and, as yet, we have no way

of enumeraung fixed points or even of describing one, |t is
worth note that when a theory has more than one fixed point,
the fixed pomnts are inaccessible in the sense that the sequence
Th(A), NM,(TH(A)Y, NM,(NMA(TR(A))), - does nor
converge to a fixed point, We have a proof, which we do not
present here, that if NM, has exactly ene fixed point, then
the fixed point is the imit of successive applications of NM
to the sequence of sets staring with A, We will eventually
attend to defining non-monotonic proof, but first we turn our
attention to the topic of semantics,

Model Theory

An inferpretation ¥ of formulas over a language L is a parr
<X, U», where X is a nonempty set, and U is a function which
associates relations and values over the domain X with each
predicate, variable, constant and propositicnal constant letter
i the usual fashion. That 15, for each n-ary predicate letter
P, U(P) € XP; for each variable or constant x, U(x} € X;
and for each propositional constant lewer G, U(C) € {0, I}.
Using this mapping funcion U we define the value ¥{p) of a
formula p in the interpretation ¥ to be an element of {0, 1}
satisfying the following conditions: For an atomic formula
plX]s = Xq), the value is 1 4f CUlxy), ., Ulxp)> € Ulp),
and is 0 otherwise, Y(-p) = 1 if V(p} = 0, and 15 0 otherwise.
Vip2q) = 1-if either ¥{p) = 0 or V{q) = 1, and 15 0
olherwise, ¥(¥xp) = 1 if for all y € X, V'(p) = 1, where
V' =z <X [y/ x3U>, where {y/ x3U 15 the mapping derived
from U by changing its value at the pomnt x to the value y,
V(¥xp) = 0 otherwise. If ¥(p) = I, we say that ¥ satisfies p,
and write VEp,

A monotonic model of a set of formulas S & L is an
interpretation V which satisfies each formula an 8, that is,
V(p) = 1 for each formula p € 3. A non-monotonic model of a
theory A is a pair ¢V, $», where V is a monotonic modet of §,
and S € FP(A). When the context makes the intended
meaning clear, we will use the term model of A to mean either
a non-menolonic model, a monotonic model, or an element of
FP{A) for the theory A.

Although unorthodox, this definition provides 2
mearung for formulas Mp which reflects the proof-theoretic
property that "p is consistent with what is beheved". This
notion s made precise by including in the model a set of
“current assumptions” (namely, Asp(S)}, A model for 2
theory must assign 1 to all of these assumptions, so the effect




1 that Mp is assigned } in a model if -~p is not derivable and
~Mp is not dertvable from the current assumptions and the
oniginal theory, that is, 1f p is consistent with what IS
“believed” in the modei, Unfortunately, Mp may be assigned 1
In some model even when =p 1s derrvable (for example, when
no axiom mentions Mp at all), This indicates that the logic is
too weak. We discuss this problem in the full paper. We
present a stronger logic, with a more elegant model theory, In
a forthcoming paper.

Much of the unorthodoxy of this semantics stems
from the nature of non-monotonicilty itself. Because the
intended meaning of the operator M makes reference to the
other formulas of the theory, an unusual holistic semantics
results 1n which the meznings of formulas involving M depend
on the theory as @ whole, Thus the semantics is quite unlike
the Kriphean semantics developed for the standard modal
logics.

With this definition of model, we can justify the
definition of provability,

Theorem 1. {Soundness) 1f Abp, then YFp for all models
<V, 5> of A

Proof: Assume Abp, If there are no models of A, the
theorem follows trivially, Otherwise, p is a member of every
fixed pont of A. Bul since every model of A is a monaotonic
model of a fixed point of A, every model assigns 1 to p. 8

Theorem 2. (Completeness) 1f VFp for all models Y, §> of A,
then Abp.

Proof: Assume that w is not true that Abp, Thus there is a
nixed pomt 5 of NM, which does not contain p. Now
FTh(S) = S by idempotence, so Sifp. But the predicate calculus
15 complete, 30 some monotonic model V of $ has V{(p) = 0. B

It 1s not surprising that we have completeness, since
the definmion of truth makes reference to provabehy. The
proof was for Ffirst-order theories, but it can easily be
generalized to any complete formal logic. For example, if we
take care not to confuse M with the S5 operator "possibly”, we
can eamly get a complete non-monotonic extension of 35,
However, none of these observations are very interesting usless
we have some assurance that provability 15 decidable. We will
shortly present a proofl procedure for non-monotonic statement
theories,

Fixed Poinls of Theories

Non-monotonic theories may have varying numbers of fixed
points. Classically inconsistent theories have just one fixed
point {the entire language L) and thus no models. The theory
T2 in {15) also has no models due to the fack of a fixed point.
Theories formulated in strictly classical language have exactly
one fixed point, as dots the theory

{un Ti=PCu{MCaC )

Some theories have several fixed points, eg. T1 in (14}, It is
also possible for a theory to have an snfinite number of fixed
points.  This is exemphfied {(we assume equality and an
infinite set of unequal constant letters) by ;
(18)74 = PC u { Yx[Mp{x) 2lp(x)A¥ylx#tya-p{y}3]] )
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Even in theories having only one fixed point, the
non-monotonically provahle statements need not coincide with
the classically provable statements. Theory T3 above 15 an
example, for G € TH(T3), but C ¢ Th{73). Some statements
will be provable in theories with muiuple fixed ponts, but
will have different proofs in each fixed point, For example,
MCvMD € THITE), and 3xMp{x) € TH(T4),

The classical resulls concerming truth and provabihty
for logical languages are that, for a given theory A, a formula
1s matid 1 A (true in all models of A} 1f and only of 1t 15
provable in A, and that the theory has a mode! if and only 1f
w is consistent (cannot be used to derive a contradiction}, In
non-monotonic logic, somewhat different circumstances obtain.
As Theorems 1 and % have shown, valduy in a theory
remains equivalent to provability. However, from the
definition of models of non-monatonic thearies, it follows that
a non-monotoni theory A has a model only 1If the operator
NMA has a ciassically consistent fixed point. Non-monotonic
theories can lack fixed points (eg. the theory T1)}, but we
have defined such theories to be inconsistent.

The basic structure theorem states that ali fixed
pomts of a non-monotonic theory A are (set inclusion)
minimal fixed points.

Theorem 3, 8y, 5y € FP{A) and ) & Sy, then 5y = Sy,

This result suggests that strict set-theoretic minimahty is not a
particularly interesting distinction among fixed points, In the
following sections we will make steps towards maore interesung
classsfications, but without a fully satisfactory solutien.
mportant apphcations of this theorem are the following two
corollaries.

Corpllary 4.1f L is a fixed point of A, then it 1s the only fixed
point of A,

Note that if L is a fixed pownt of A, then A 15 classicaily
inconsistent, that is, Th{A} = L.

Corollary 5. 11 p, =p € TH(A), then TH(A) = L.

With these resulis, we can Study the notron dual (o
provabilily in non-monolonic theories. We say that a formula
p s arguable from A if p € UFP(A), that 1) if some fixed
point of A contains p. Clearly, all provable formulas are
arguable, Our next theorem shows that in consistent theores,
provability and arguabihity are aimost dual notions.

Theorem 6. 16 A is consistent and p 15 provable in A, then -p
15 nol arguable.

Unfortunately, the converse of this thearem 13 not true. For
example, in the theory with no proper axioms, -C s not
arguable, but C s not provable. We will term the notion dual
to provability conceivability. Thus all arguable formutas are
conceivable, but not vice versa. We say doubtless p if and only
If ~p is not arguable. In PC, C 15 doubtless yet not arguable,
and in the theory -

(19) T5= PCu { MCaG, M-C=-C )




C is arguable yet not doubtless.

It is worthy of nole that the provable and arguable
staternents of a consistent theory cannot be classified as the
monotonic theorems of the theory augmented by some set of
assumptions. That is, the set of arguable statements may be
inconsistent .yet not sum to the entire language L, and the set
of provable statements may involve assumptions that vary
from fixed point to fixed point, as in the theory T2 above,
where neither the assumption MC nor the assumption MD is
present in both fixed points.

Another natural classification is that of “decision”.
We say that p is decided by a consistent theory A if and only
if for alt S € FP(A), enther p € 3 or ~p €8, The dual to this
nolson is just its negation. In this case we say that A is
ambivelent about p if p is ot decided by A.

Corollary 7, H p is doubtless yet decided by A, p is provable,
Tlhe Evolution of Theories

We now turn to analyzing inter-thecry refationships. These
are important in describing the effects of incremental changes
In the set of axioms, and this is the task of practical systems
ltke the TMS [Doyle 19783, which has the task of maintaining
a description of a model of a changing set of axioms. As we
shall see, there are many unusual phenomena which occur
when theories change, The most striking result shows that the
analogue of the compactness theorem of classical model theory
does not hold for non-monotonic theories. This has important
repercussions on the methods useful in constructing “models”
of theories incrementalty,

Theorem 8. There exists a consistent theory with an inconsistent
subtheory.

Proof: Consider the consistent theory
20} T6 = PCu { MC>-C, -C }.
The subtheory PC u { MC2-C } is inconsistent, B

Note, however, that the theory T6 in (20) has as a thesis the
formula -MC, which makes it quite different than some
previously considered theor;es,

In many cases, the changes in fixed points induced
by changes in theories s less drastic than those apparent in
the previous theorem. The simplest cases are as foliows.

Theorem 9 I A iy consistent, and p is arguable in A, then
A' = Au{p} is consistent, and FP{A")nFP{A} # =,

Unfortunately, this theorem cannol be strengthened 1o
conciude that FP{A'} is contained in FP{A}, since in the
theory

(21) T1= PCu { MCo2-D, MD=-C, ~C=E }

there are two fixed points, call them F) and F2, with -C € Fl,
E €Fl and =D € F2, E ¢ F Extending this theory by adding
the axiom E produces a theory aiso with two fixed points, one
- of which 15 F1, but the other fixed pomt F3 differs from F2 In
that £ € F3 and M-E € F3,
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Theorewm 10, 16 A and A' = Aulp} are consistent and
FP{AIrFP{A') # &, then p is arguable in A.

Theorem . 1§ A and A' = Aufp} are consistent, then p 15
provable sn A if and only if FP{A") = FP(A).

The import of these theorems is that if 2 new axiom
1s already implicit 1n the current axioms, either no change of
fixed point is necessary, or a simple shift to a different fNixed
point of the previous axioms 15 aliowable. When considering
changes which delete axioms from theories, the basic problem
15 the non-compacness resull mentioned above. Other
interesting gquestions are of the form "how few axioms must be
added or removed 1o remove p". Answers {0 these questions
will in general depend on the specific theory in quesiion.

Another important phenomenon 1s the “hierarchy of
assumptions” {Doyle 19781, in which some non-monotomic
¢hoices depend on others. This manifests wn terms of fixed
points as the addition of new axioms increasing the number of
fixed points of the theory, For example, adding the axiom E
to the theory
{22) T8 = PC u { EEAMCI®-D, [EAMD]=AC )
increases the number of fixed points from one to two. In this
case, E can be interpreted as the reason for choosing between
~C and ~D.

To get a global view of theory evolution, we constder
the set of all consistent theories containing 2 censistent theory
A as a subtheory. For a formula p, we can consider the
evolution of the properties of p of being arguable, provable,
or decided over sequences of extensions of the theory A. The
evolution of arguability is mainly a question of control
structures; this is the point of the encoding of control
primitives in non-monotonic dependency relatronships given
by Doyle [1978]1, We have at present no way of describing the
evolution of decision, However, analysit of the relationships
between the theories and their extensions will shed light on
how our semantics for Mp matches the ntuitive notion of “p
can be added consistently to the theory”

We say that p is ¢ssumable in a consistent theory A
if the theory Au{p] is also consistent. We name the dual
hotion by saying that p is uncontroversial in a theory il ~p 18
not assumable an the theory. The matching of the semantics of
non-monotohic logic with this more standard notion of
consistency will be apparent upon exarmnirig the correlation
between assumability of p and the arguabilty of Mp i a
theory, since this latter condition would seem to say there is a
coherent interpretation of the axioms in which p is consistent,
Qur logic is weak, however, and so this correlation is weak.
{The correlation is much stronger in the stronger logics
mentioned later.) As an approximation, we note that Mp 15
arguable if p is arguable, and so insiead attempl to correlate
arguability of p with assumabilnty of p. This correfation is as
follows. By Theorem 9 the assumable formulas includes the
arguable formulas, but not vice versa since C is assumable but
not arguable in PC. The assumable formulas are
incomparable with the concetvable formulas, since C is
conceyvable but not assumable in
(23) 19 = PC v { CoIDALMD=-D11 },
and =C iz assumable but not conceivable in the theory T3 of




{17}, Also, the assumable formulas are incomparable with the
uncontroversial formulas, since C 15 assumable but not
uncontroversial in PC, and C is uncontroversiat but not
assumable in
{24) TI0 = PC u { CoIDAEMD>-D)3, ~CoLEAIMES-ED] }
- We speaify another classification by saying that 2
formula p is safe in a consistent theory A if and only if
p € TH(A'} for all consistent A' such that A & A%, and that p
18 forseeable if and only if -p i not safe. Let
SafelA) = {p: p is safe in A}. We then can characterize the
set Safe{ A) as follows.

Theorem 12, 1 A is consistent, then Safe{A) is the least set
such that the following three conditions hoid:

(1) A = Safe(A)

(i) Th{Sare{A)} = Safe(A)

(i) If p € Safe{ A}, then Mp € Safe(A}.

It is ciear that all safe formulas are both assumable
and uncontroversial, and that these inclusions are proper,
Elementary considerations show further that the forseeable
formulas clude the assumable and uncontroversial formulas,
but again, not vice wersa,  Also, the provable formulas
properly include the safe formulas with theory T3 in (17) as
the example, and the forseeable formulas properly include the
conceivable formuias via the same example,

A weakened version of assumability is produced by
saying that p is realizable in a consistent theory A if there is
some consistent theory A' such that A © A' and p € A\ We
also say that p is undenioble if and only if ~p is not reahzable,
Clearly, the realizable formulas include the assumable
formulas, but the converse does not hold as MC=-C is not
assumable in PC but is an axiom of the consistent theory T6
m (20). The forseeable formulas obviously include the
realizable formulas, but not vice verse since G is forseeable but
not realizable in the theory T9 of (23). Also, the realizable
formulas are incomparable with the conceivable formulas,
since G is concelvable but not realizable in T3 of (23), and ~C
15 reatizable but not conceivable in T3 of {17). The example
of TI0 in {24} provides an example of what following Kripke
might be called the peradoxicel formulas of a theory, formulas
(in this case C) such that neither they nor their negations are
realizable, The example of T9 in (23) provides an example of
what might be calted the intrinsic formulas of a theory,
formulas (in this case =C) which are realizable and
undeniable,

Putting all these observations together, we arrive at
the following diagram of inclusions,
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FORSEEABLE

DOUBTLESS

UNCONTROVERS1AL

N
UNDENIABLE ARGLABLE
~

AN

PROVABLE

SAFE

A Proof Procedure for Non-Monotonic Statement Theories

In this section, we demonstrate a proof procedure for the non-
monolonic statement logic, This procedure is based on the
sernantic tableaun method for the ordinary sentential calcuius,
[Beth 19583 In this method, a systematic attempt is made to
find a falsifying interpretation for a formula under test The
formula is labeled "false” or "B", and semantic rules guide
furiher lzbeling in an obvious way, For example, to show
-[C 2 DI o [-C v D],

start by labeling the formula false:

[C>D) > (-CvD

e

For &t to be false, is antecedent must be truz and its
consequent false:

IC>D0) > [£LvD

1 8 8

and similarly for disjunction and negation, In order to
proceed further, the tableau must split into two cases to handle
the embedded implication:

1. €50 > (LvD

81 86 ele
1. [€>B) > (L vD)
i11 8 gloe

In case |, C is labeled both 1 and 0. in case Il.,, D is labeled
both 1 and 0. Thus there is no falsifying model, and the
formula is valid.




Consider the tabteau for [C v D] 2 LC A D1:
{25) {CvDl > ICaAD

1 8 8

{CvD >ICAD

11 8 g
iCvD o €aD) CLOSED
11 g 08

[CvD o>iCaAll OPEN
110 8 188
[Evil >iCaDl

11 8 B
iCvDl»iCADl OPEN
811 8 8B
iCvDi>{CnADl CLOSED

111 8 188

This tableau has been split twice, for a total of four branches.
‘Two branches are closed as before, that is, some formula is
fabeled both true {1) and false {8). But two are open, that is,
there is an exhaustive consistent labeiing of formulas. This
means that there are two falifying models, so the formula is
not vahid. (Notice that we could have been more clever in
labeling the lines of this tableau. In the second line, for
ihstance, we could have labeled both C's at once, forcing the
D's to be labeled 0, and arriving at an open branch
immedjately.)

We will extend this procedure to handle non-
monotonc statement theories. Without going into details, we
assume an implementation of the algorsthm just alluded to,
which takes a goa/ and generates the complete tableau for It.
(Eg., the goal of {35} is {GvDIa[CAD)) A tableau has
several branches, each a consistent fabehing of subformulas if
one exists (when the branch is apen}, else a partial labeling
{when it is closed). The tableau is the result of applying all
rules to the goal. Two tableaux are equal if and only if they
have the same goat. The tableau of a formula is obviously
computable, since the number of branches s no greater than
QN, where N is the number of subformulas of its goal.

For non-monotonic logic, we nesd 1o generalize to
tableau structures. If A is a statement theory, and p is a
formula whose provability is to be tested, then <A, p, ¢, X> is
an A-tableau structure if and only if t is the tableau with goal
A=p; and X is the smallest set such that t € X, and if t' € X,
then if Mg appears labeled O in some branch b of €, then
€ X, where t" is the tableau with goal A=-g. In this last
situation, we say that " mentions (" in branch b,

In the ¢lassical procedure, a tableau is closed if all fts
branches are, and this can be determined unambiguously. In
the case of 2 tableau structure, we can't teif whether a tableau
is closed until we have determined the status of the tableaux it
mentions, and there may be loops to contend with.

Therefore we introduce the notion of an admissible
labeling of a tableau structure, an assignment of one label,
either OPEN or CLOSED, to each tableau in the structure,
such that:

(a) If the tableau with goal A2~q is labeled OPEN, then
every occurrence of Mq is labeled 1 in every tableau, and
(b) A branch is labeled CLOSED if and only if some
formula is labeled both 0 and 1 in that branch,

The proof procedure creates tableau structures and
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labels them, as follows., Civen A and p, the first step 15 to
construct the tableau with goal A2p. All other tableaux
needed are then constructed, That is, if some constructed
tableau has a formula Mg labeted 0 in an open branch, then
construct the tableau with goal A>-q if that tableau was nol
previously constructed. The tableau structure is then checked
for admssible labelings by examining all possible labelings of

the tableaux for labelings satisfying the admassibiiny test. ,

Thit test consists of first labeling with § each occurrence of Mg
in the tableau structure provided that the structure contains
the tableau with goal AD-q Jabeled OPEN. Then the labeking
15 admussible 1f all tableaux labeled OPEN have some open
branch, and al tableaux labeled CLOSLD have every branch
closed. If in all admissible labelings the initial tableau with
goal A=p s labeled CLOSED, then p is provable, and
otherwise 15 unprovable. We will shortly prove the correctness
of this algorithm,

We first present some examples, In the theory
(26} Tit = SC u { MC2-D, MD=-E, ME2AF }
{see [Sandewall 19721) the Tli-tableau structure for = has
onty one admissible labehng: .
T} « MCo-D | t ~Ftt* £}t Dy L

P Bl j er | Bl |} Bl
Ho>~E | ME | HD | He

) B 8 | B} 8 i
HEs—F | | | i

i | CLOSED | OPEN | CLOSED | OPEN

Notice that we don't bother to copy the axioms in each
tableau, but only those parts that become relevant, The
tableau structure shows that -F € TH(Til), but
~C ¢ TH(TL1).

Anocther example is the TI2-tableau structure for =C,

where
(am T12 = SC u { MC>-D, MD2+C }.
T12 « M0 |t L [t DO
1 | gl | g1
HO>-C | MO} HC
1 | 8 i 8

This tableau structure has two admissible labehngs. If o' is
labeled OPEN, t 15 labeled CLOSED, and wviee verse. So there
15 an admissible fabeling in which t is labeted OPEN, and -G
is not provable,

On the other hand, the Tl2-tableau structure for
MCVMD looks like this:

TiZ = HC>D Jt MOWwHO ¢ £ |t D
1 | gee | 8l | 81

HO>-C | i HO | He

1 | | 8 1 :

Again, there are two admissible fabelings, but m both of them
t is labeled CLOSED, so MCvMD is a theorem of T12

{The tableau structures just given are not reaily
complete. it is left as an exercise for the reader to show that
using the axioms to split each tableau Into branches will not
change the outcome.)

Theorem 13. The proof procedure always haits and finds ail
admissible labelings of the tableau structure for its goal

The next two lemmas guarantes the correctness of the




-

approach,

Lemma 14, 16 is  fixed point of NMy, there is an admissible

labeling of the tableau structure for A=p such that p € 3 If
and only If the tableau js fabeled GLOSED in that labeling.

Lemma 5. 1 there is an admissible Jabeling for the tableau
structure for A=p, there is a fixed point § of NMy such that,
for every tabieau with goal Aogq, the tableau is labeled
CLOSED if and only if q € 5.

Theorem 16, I A is a statement theory {a finite extension of
the sentential calculus}, then non-monotonic provability in A
15 decidable,

The proof procedure extends a previous procedure
due 1o Hewit [19721, and embodied in Micro-PLANNER
[Sussman, Winograd and Charniak 1971}, a computer
programming language for (among other things} mechanical
theorem proving. A practical implementation of this procedure
would interleave the bullding and labeking of tableaux, and
would avoid building 2 complete tableau structure when
unnecessary, We invite you to compare this procedure with,
for instance, the tableau-structure method for S5, [Hughes and
Cresswell 19723 One difference between these procedures is
that the present procedure splits tableaux into branches before
generating alternatives, while the S5 procedure splits the whole
set of alternatives into branches. :
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Completeness of Conditional Reductions
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Abstract

Many systems for symbolic computation, program verification, and automatic theorem proving use
reductions (rewrite rules) to simplify mathematical expressions and prove equalities between them, There
has also been work on proving properties of sets of reductions for theories axiomatized by equalives.
However, these theoretical results deal with unconditional reductions, while most systems allow condition-
al reductions. These are rules that require conditions to hold before they are applied. In this paper we
examine conditional reductions and the theoretical and practical problems of obtaining complete sets of

such reductions.

1. Introduction

Reduction systems have played an important role in
the design of many symbolic computation systems. Sys-
tems such as REDUCE [Hearn 1971} and SCRATCH-
PAD [Griesmer 1971] allow a user to provide his own
set of reduction rules for simplifying algebraic expres-
sions. Other examples of practical interest are provided
by theorem provers based on reductions [Bledsoe 1971,
Carter et.al. 1977]. The aim in these applications is to
transform one symbolic expression into another simpler
or more readable one by the repeated use of replace-
ment rules until no rule applies.

Reduction systems have aiso been modeled and
studied theoretically to determine their properties in
general [Rosen 1973, Slagle 19741, An important prop-
erty that has been investigated is the notion of
completeness [Knuth and Bendix 1970, Lankford 1975}
This work has produced methods for deciding, in cer-
1ain circumstances, whether a set of reductions together
with its interpreter captures the theory given by the
reductions treated as equations. In addition to its theo-
retical interest, this question is important to developers
of systems which make use of reductions, for only then
can claims be made about the coverage of an applica-
tion based on a system of reductions.

However, there is a serious difference between the
reductions studied theoretically and those used in prac-
tice. Systems of unconditional reductions have received
. the most study, while most systems aliow reductions to
have conditions that are required to hold before the
reduction can be applied. This paper attempts to devel-
op a theory of conditional reductions.
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After a brief review of unconditional reductions, we
point out, through examples, the need for conditional
reductions and some of the problems in their applica-
tion. A notion of completeness is defined for condi-
tional reductions that is independent of the way in
which the reductions are interpreted. We provide three
possible interpretations for conditional reductions, and
discuss the problems with each on typical examples.
and their effect on the question of deciding complete-
ness.

2. Unconditional Reductions

In recent papers on reduction systems {for example.
{Lankford 1975, Musser 1978}). the concern is with
theories which are axiomatized by equalities:

1L, =Ry

L, =R,
A set of reductions for this theory is produced by re-
placing the equalities with a preferred direction for
substitution:

Ly - Ry

L, - R,
The relation - is defined on expressions of the theory.
If « and B are expressions, then a=p8 iff there is some
subexpression of a which is an instance of some L;
under a substitution 8, and B results from a by replac-
ing this subexpression with the corresponding instance
of R;. That is, if a=afL;8}, then B=a[R;6}.

Since normally an expression will be reduced re-
peatedly, as long as a rule applies, a desirable property




of 2 set of reductions is the finite termination properiy.
that there exist no infinite sequences ag=ap=... . AS
usual, -* will be here the reflexive and transitive clo-
sure of =+, and an expression a will be irreducible if
there is no expression B such that a=g. 1f a=*8 and f
is irreducibie, then a simplifies to . If for a set or
reductions having the finite termination property, there
is no expression a such that a~*f and a-*y for-dis-
tinct irreducible B and vy, then that set has the unigue
termination property, and is calied complete. Complele-
ness is a useful concept because a complete sel of re-
ductions for a theory provides a decision procedure for
it. That is, to decide an equality in the theory giving
rise to the reductions, it is sufficient to reduce both
sides of the equality to irreducible expressions and
check them for identity.

Knuth and Bendix{1970} and Lankford[1975] pro-
vide formal definitions of these properties and give
algorithms that will decide whether a set of reductions
with the finite termination property has the unique
termination property. The algorithms also attempt to
“complete” the set of reductions by adding additional
rules and testing again. Termination of this phase is not
guaranteed, however. They have applied the results to
group theory, semigroups, and rings. Extensions to the
reduction idea have been made to theories with associa-
tive and commutative axioms, which do no have finite
termination {Lankford and Ballantyne 1977, Stickel and
Peterson 1977], and complete reduction systems have
been applied to data type verification {Musser 1978}

3. Conditional Reductions

As mentioned earlier, unconditional reductions
ajone are rarely used in practice. For example, the
SCRATCHPAD and REDUCE systems use reductions
of the form L-R if A , where A is a boolean expres-
sion, presumably containing variables from L. The
intention is that the reduction is applied only if condi-
tion A holds. The principal questions arising about sets
of such reductions depend on the nature of the condi-
tions A, the definition of completeness, and the way in
which the reductions are applied to expressions -- the
definition of the relation -.

We could consider two possibilities for conditions
associated with reductions. A condition may be an
expression to which reductions are applied in order to
determine whether it evaluates to true or false, or it
may be a formula of a theory separate from the one
being defined by the reductions. For both practical and
theoretical reasons it is advantageous to take the latter
approach. We call the theory serving as a source of
conditions the underlying theory, and assume that we
‘have a decision procedure for it. We show in this pa-
per that even with such simplifying assumptions decid-
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ing completeness of conditional reductions is difficult.
In practice this assumption is satisfied by developing a
hierarchy of theories, in which each theory is defined
by a set of reductions with conditions from the theories
Jower in the hierarchy. Perhaps a conditional reduction
can be best understood as a large (possibly infinite) set
of unconditional reductions obtained by replacing all
the variables of the underlying theory by zll possible
combinations of values satisfying the associated condi-
tion.

We assume that the matching of the left hand side
of a rule to a subexpression takes place as in uncondi-
tional reductions {see [Lankford 19751). For example,
an expression does not match a left hand side F{x.x)
uniess both its arguments are identical; no other test is
aliowed to determine the equality of the arguments.
Thus we restrict all non-syntactic tests 1o the conditions
and do not interpret argument patterns as de facto \ests
in the underlying theory. Systems with associative and
commutative reductions do allow 2 generalization of Lhe
identity test, but in a well-defined syntactic way [Stickel
and Peterson 19771

Even with an oracle for the conditions, defining the
“eorrect" way of interpreting the rules is not straight-
forward. Consider the algorithms used in REDUCE
and SCRATCHPAD, for example, If REDUCE is at-
tempting to apply a reduction to an expression and the
condition does not hold, the situation is as if no maich
for the left hand side of the rule had been found, and
the search for an applicable rule continues. This same
scheme is used in the theorem prover of Carter [19771.
However, in SCRATCHPAD the above scheme is fol-
jowed only if the condition is shown faise. When sym-
bols are involved an oracle may not be able to resobve a
condition to either true or false and in this case
SCRATCHPAD will make no reduction to that expres-
sion.

This proi)lem of unresolvable conditions can be
illustrated by the following example of expressions in-
volving one dimensional arrays.

Example 1: Let us represent the access of the i-th
element of an array a by ACC(a,i), and the assignment
of x to the i-th element by a := CH(a.i,x). Thus the
result of several array assignments can be represented
by a nested expression built from ACC, CH. names of
arrays, names of indices, and names of values storable
in the arrays. Assume that we have the task of writing
a set of reductions that would reduce any such expres-
sion to a canonical form, that is, two expressions de-
scribing the same array value will reduce to the same
form. We might include the following two reductions:

ACC(CH(a,i,x),j) - x if i=]j
ACC(CH({a,i,x),j) = ACC(a,j) if is]




The underlying theory is arithmetic, i and j are varia-
bles ranging over its domain, = and » are operators of
the underlying theory. In contrast, ACC and CH are
operators of the theory being defined by reductions,
and a is a variable of this theory. In particular, ACC,
CH, and a have no interpretation. The range of x is
not important to our discussion; it could be the same as
i, the same as a, or range over a completely different
domain.

Suppose these reductions are 1o be applied to the
expression ACC(CH{b,m,ACC(b,n}).,n). Assuming that
nothing is known about b, m, and n, neither condition
m=n nor men can be proved. But in either case the
two reductions give the same result, namely ACC(b,n).
The difficulty is that the inlerpretations of either the
SCRATCHPAD or REDUCE will not produce this
result and can be considered defective or incomplete.
Note that this is a different form of incompleteness
than the one familiar in unconditional reductions.
There, incompleteness results when an expression can
be simplified in more than one way. In the conditional
case we have the additional problem that an expression,
under some reasonable definitions of rule application,
may not reduce at ali, although the rules imply that a
reduced form exists.

An additional difference in the notion of complete-
ness is due to the presence of an underlying theory for
the conditions. To illustrate this point consider the
completeness of the reductions in the following exam-

ple.

Exemple 2: NOT(T) - F

NOT(F} - T.
Should this set of two reductions be considered com-
plete in view of the fact that the expression
NOT(NOT(x}) does not reduce to x? As a set of un-
conditional reductions this set is complete because there
is no reason to suppose and no way to assert that x can
take on only the two values T and F. However if we
have an underlying theory with domain [T, F}, then we
can formalize the incompleteness of this set.

To formalize conditional reductions, we need to
define formulas of the underlying theory and expres-
sions in the theory to which reductions are applied.
Although the underlying theory of the conditions is
separated from the theory being defined, the latter
theory will contain terms of the underlying theory.
These terms are tested by the conditions when the re-
ductions are applied. The variables of the underlying
theory will be called term variables. The usual expres-
sion variables of the theory being defined are, as in
unconditional reductions, uninterpreted place holders.
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Definition. Assume a theory {the underlying theory)
with syntax determined by a set of function symbols,
predicate symbols, variables, connectives, and quantifi-
ers. A lerm is constructied in the usual way from varia-
bles and function symbols. A formula is constructed in
the usual way from tlerms, predicate symbols, connec-
tives and quantifiers.

We assume a given interpretation for the underlying
theory. This includes a domain over which variables
range, a function for each function symbol and a predi-
cate for each predicate symbol. Moreover, we assume
that that the language of the underlying theory contains
a constant symbol for each element of the domain.

We also introduce operators. They are distinct from
the function symbols of the underlying theory because
they have no interpretation.

Definition. An expression is constructed from opera-
tors, expression variables and terms, similarly as terms
are constructed.

Definition. A reduction has the form L - R il A,
where L and R are expressions and A is a formula.
referred o as the condition. The only free variables of
A may be the term variables appearing in L, and the
only variables of R may be those of L.

Nothing has been said about how such a reduction
is applied. After defining completeness, we shall pres-
ent several alternate definitions of reduction applica-
tion.

4. Completeness

In this section we define a notion of compleieness
for conditional reductions that is independent of a par-
ticular interpretation of reduction application. Condi-
tional reductions are normally applied in the presence
of a constraint, In practice, a constraint is a formula
restricting the values of expression components. For
example, symbolic computation along program paths
may use constraints to record branch conditions. Below
we formally define a constraint as a set of environ-
ments, and define completeness relative to such a const-
raint. The predicale x<0 would denote the constraint
consisting of all environments with negative x.

Definition. An environmen! is an assignment of
values 1o all term variables. E(x) is the evaluation of
the term or formula X in environment E using the given
interpretation of the underlying theory. For a formula
A and an environment E we say that A is Irue in E,
written E & A, if E(A) = TRUE. A constraint is a
set of environments. A formula A is true in a const-
raint C, written C E A, iff A is true in every environ-
ment contained in C.




We extend the notion of evaluation 10 expressions:

Definition. For an expression a and an environment
E. E{a) is an expression obtained from a by replacing
terms with constants, The corresponding constant for a
term t is obtained by evaluating t after its variables are
replaced by the values assigned to them by E.

Our definition of compieteness assumes that we
have a set of reductions and objects to which reduc-
tions are applied {expressions of conditional expressions
depending on interpretation), Each of the three inter-
pretations befow defines how the seil of reductions de-
termines a relation - on the objects relative 1o a
constraint,. We write C 2 a » fif a reduces to B under
constraint C, and abbreviate this to a - B if C is the
set of all environments (i.e., there is no constraint}.
We will assume in the following that = in each inter-
pretation makes the set of objects intc a well founded
set for any constraint -- that is, we assume the finite
termination properly. As usual, we say that an objecl a
is irreducible iff there is no object B so that C =
a = B, and that the relation ~* is the reflexive and
transitive closure of »,

Besides the relation -+ each interpretation will also
define two binary relations =, and =g on the set of
objects, both relative to a constraint. The relation =,
is syntactic equality between objects and ideally should
be strict identity. We cannot make it strict identity in
cases where the objects contain terms of the underlying
theory., (Reductions modulo an equivalence =, are
wreated in general by Huet{197731.) The relation =g
represents semantic equality -- two objects are semanti-
cally equatl iff they can be proved equal from the set of
reductions when considered as eguations. Of course,
objects related under =, are also related under =g
The goal in applying reductions is to obtain objects
which are equivalent under =, from any objects related
by =..

Definition. A given set of reductions is complete
with respect to a constraint C iff for any two objects ag
and By satisfying C 2 eg =g Bos there exist objects a
and B such that

a)C=am=. B
b} C = ag =* a, and
¢) C > By =* B

In the interpretations below, we will define =, =4,
and =, so that aff irreducible a and B obtained from ag
and £y are equivalent under =,.
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4. Three Interpretations

We now present three different metheds of apply-
ing reductions and examine how they effect the process
of determining completeness. The first interpretation is
probably the most common in practice; REDUCE
{Hearn 1971}, SCRATCHPAD |Griesmer 19714, and
MCS [Carter 1977] all use forms of it. It requires the
condition of a reduction 1o be true before the reduction
is applied. The second interpretation requires only that
the condition not be false; when a reduction is applied
its condition is carried along with the result in a condi-
tional expression. This approach, which changes condi-
tional reductions iato an if-then-else form, has been
used by Musser [1978]. The third interpretation com-
bines features of the other two; it uses conditional ex-
pressions only in an intermediate stage, and attempts to
combine them to yield unconditional expressions.

Interpretation 1: In this interpretation the objects
being reduced are expressions. A reduction is applied
only if the associated condition is true. This can be
illustrated by the effect of this interpretation on exam-
ple 1. The expression ACC(CH(a,i.x),i+1} can be
reduced to ACC({a,i+}) using the second reduction and
the fact that iei+l. However,
ACC(CH(a,i,ACC{a,j)),j) cannot be reduced using
either reduction because for some values of i and j we
have i=j, and for others is}. This also illustrates that
the set of the two reductions is incomplete since the
above expression is equal to ACC(a,j) in both cases,

We can define this interpretation formally.

Definition. For two expressions a and B and for a
constraint C we define C > a =, B iff E{a} = E() for
all environments E of C.

Definition. For a constraint C and expressions ¥
and § we say that y reduces o § under C, written
C > y ~ &, 4ff there exists a reduction L. - R if A
and a substitution 8 so that the following three condi-
tions are satisfied.

a) y = yiL8),

b C E A#, and

¢) § = y[RB}
In this situation we say that the reduction L - R if A
is applied 1o y to produce &.

Definition. For an environment E and two expres-
sions @ and B, E > a = B is the reflexive. symmelric
and  transitive closure of {E} > a - B and
{E{ > a =, B. For a constraint C and expressions a
and 8, C > a = Biff E > a = B for every E ¢ C.




For interpretation 1 completeness is undecidable, as
proved in {Brand 1978}, The proof uses the standard
approach of reducing the halting problem. Given a
Turing machine, we construct a sel of reductions, which
is complete iff the turing machine does not terminate
on blank tape. The incompleteness of the set of reduc:
tions is based on

S(v) = eif v=0

S(v) = Hif ve0
For nonzero v, § reduces to the irreducible H and the
reductions are designed so that any expression contain-
ing H reduces to H. If v is zero then S reduces 1o e,
representing the initial configuration. The reductions
are such that an expression containing ¢ will reduce to
H iff the expression represents a halting computation of
the turing machine starting from a blank tape. Thus we
have a set of reductions with the finite termination
property that is complete iff there is no expression rep-
resenting a halting computation of the given Turing
machine.

Interpretation 2: The reductions in example 1 are
incomplete under Interpretation 1 because it was not
possible to apply reductions under the assumption that
i=j and isj, and then compare the results. This split-
ting into cases can be done in this interpretation, where
the objects are conditional expressions and a reduction
is applied as soon as its teft hand side matches and its
condition is not identically false. When applied to ex-
ample 1 we get:

ACC(CH(a,i,ACC(a,j)),j)
- if i=j then ACC(a,j)
else ACC(CH{a.i,ACC(a,j))j)
~ if i=j then ACC(a,j) else ACC(a,j)
- ACC(a,j}

In the formal treatment below we omit these
if-then-else trees and look only at the leaves and the
conditions on the paths to the leaves. Our conditional
expressions will be of sets of pairs, where each pair
specifies an expression and its associated coadition.
For example, the expression

if i=j then ACC(a,j) else ACC(a,j)
would be written -

{(ACC(a,j}, i=}), (ACC(a,j}, i=j}1.
We will not further reduce this expression (as was done
above using if-then-e)se}, but instead define =, so that

{(ACC(a,j), i=j), (ACC(a,j}, i=])}
¢ {(ACC(a,j), TRUE)L

Definition. A conditional expression is a set of pairs
t...(a;, Aj..}, where a; are expressions and A; are
formulas of the underlying theory, For any i & j we
require that AjaA; be false under the given constraint.
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Definition. For two conditional expressions £ and w
and a constraint C we say that § reduces to w under C,
written C 2 § - w, iff

a) there is a reduction L -~ R if A,

b) £ has the form £ v {(y[L81, B}y (for some
substitution 8), :

¢) BAAB is not false under C, and

d) w is £ v {(yLR6I, BrAS8), (y(LE],
BA-AG)]

Definition. For two conditional expressions
£ = foleg, AP and o = [...(Bj. B_;)...} and a
constraint C we say that C > § =, w iff for all i, j, and
all environments E in C  satisfying  Aj+Bj.
E(e;) = E(8)).-

Definition. The relation =, between conditional
expressions is the least relation containing =+, = and
closed under reflexivity, symmetry and transitivity.

Test for completeness, A given set of reductions is
tested for completeness with respect to a constraimt C
as follows:

a} Select all pairs of reductions Ly - R if Ay
L; ~ Ry il Aj, such that:
i) Ly is of form LafLy'},
ii) L, is not a variable, and
ifi) L, and L," are unifiable with most
general unifier 8.
b) For each such pair, find some irreducible
expressions = and p such that
C-» {(Lz{Rl]B, A]B)} -* rand
Co» E(Rze, Aze)} - P
For completeness we require that C > 7 =, p.

The test and proof of its correctness are essentially
the same as in Knuth and Bendix. In our case it is only
complicated by the underlying theory, and the proof
can be found in [Brand 1978).

Interpretation 3: In this interpretation the objects to
which reductions are applied are expressions. To de-
fine reductions in this scheme, we will consider pairs
(v, F), where vy is an expression and F is a formula, and
define reductions on pairs and then reductions on ex-
pressions.

This pair calculus approach has some advantages
over the previous interpretations. A major drawback of
interpretation 1 (not present in interpretation 2} is that
if neither alternate of reductions of the form L « Ry if
A and L + Ry il ~A can be followed, no transforma-
tion is made, even in cases where R; and R have iden-
tical instances, or instances which can be made the
same by further reductions. However, in most cases
following both paths in the hope of obtaining equal




expressions is futile. In the if-then-else formulation,
this often produces a large conditional expression,
which might not be regarded as simpler than the origi-
nal expression. The pair caleulus approach retains only
those results of branching which lead 1o simpler expres-
sions without added conditions, and thus may be prefer-
red if the if-then-else construction is unwanted or
proves cumbersome.

Definition. The pair (y, F) reduces to (8, G), writ-

ten (y, F) ~ (6, G}, iff

a) there exists a reduction L - R if A and a
substitution @ such that & results from y as it would if
the unconditional reduction were applied, and G is the
formula F & A#; or

B) (y, F) =* (5, G;), (v, F) =* (8, Gy}, and G
is the formuia Gy v Ggi or

¢) (y, F) =-* (&, G).

We now use the definition of reduction between
pairs to define & notion of reduction between expres-
sions based on this pair calculus.

Definition. y reduces to § under a constraint C,
written C = y = 8, iff (y, TRUE) = (§ P) and C £ P.

=

. and =g are defined on expressions as in inter-
pretation 1. ‘

It should be clear from the definition that the calcu-
lus of pairs is at least as powerful as interpretation 1;
that is, if C > y =* & under interpretation 1 then C = v
-* & under interpretation 2. To see the increased pow-
er of this method, note that it succeeds on example I:
the pair (ACC(CH(2,i,ACC(a,})),j), TRUE) reduces to
(ACC(a,i), i=j v ixj).

However, the pairs approach does not offer a solu-
tion to some problems that interpretation 2 does solve.
Consider the example below:

F{x) - G(x) il A

F(x) - H(x) il -A

K(x) - Gx)if A

K(x) = H(x) il A

Under interpretation 2, F(a) and K(fa) would reduce to
identical conditional expressions. Under interpretation
3, they would not reduce at all, since no merging could
occur.

Example 3:

Completeness under this definition is undecidable.
The proof is identical to the proof for interpretation 1,
except that it is based on example 3.
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6. Conditicnal Reductions and Equality

Because of the substitutivity property of equality.
an expression in the presence of 2 constraint implying
equality between terms might represent an equivalence
class of expressions, and deciding on a representative
member of the class is often difficult. An example will
illustrate some of the problems:

F(i,j, k) - GG.i) il is)
F(i,j,k) - G(.k) if i=]
If we consider the expression F{a,b,a), interpretation |
makes no transformation, since neither 2=b nor a=b can
be proved. The if-then-else approach, interpretationl.
produces

if a=b then G(a,a) else G(b,a},
and might replace G(a,a) by G(b,b), depending on any
ordering assumed and on what rules for conditionals are
present. The pairs approach, interpretation 3. could
produce the pairs (G(a,z), a=b) and {(G(b.a), a=b),
Neither of these two methods could continue because
G(a,a) and G(b,a) are not the same.

Example 4:

The problem is that given these reductions, F(a.,b,a)
should reduce to G(b,a), with no attached conditions.
Since G{a,a) is obtained on the a=b branch, it can just
as well be written G(b,a), and since this is the same as
the expression obtained on the a=b branch, the condi-
tional or the two pairs should yield G(b,a) as the result.

One solution to this problem is 1o carry around
equivaience classes of expressions when equalities in-
duce them, and allow reductions such as the above to
occur whenever two classes have a nonempty intersec-
tion rather than insist upon identity. This would give
the classes {G(a,a), G(ab), G(b,a), G(bbl)i and
{G(b,a)} in the above example.

The problem does not lie with equalities in the con-
ditions. For example the expression
if a > 5 then F(a) else F{lal)
should simplify to F({al)}. But in order to do that it is
necessary to realize that it is valid to replace F(a) in
the then part by the more complicated expression
F(fatl).




7. Summary

We have defined conditional reductions and exam-
ined three different ways of applying them, representing
their use in practice. We also have defined a notion of
completeness that is independent of the particular inter-
pretation, and considered the question of deciding com-
pleteness in each of these interpretations. The three
approaches differ in their handling of unresoived condi-
tions. The first approach does not keep track of ail
potential reductions and therefore is the least demand-
ing of space and time. For this reason it is the most
common interpretation in practice, However, it is also
the weakest: more sets of reductions are incomplete
under this interpretation than either of the others. It
has the additional disadvantage that it is undecidable
whether an arbitrary set of reductions is complete or
not, even if we assume an oracle for the underlying
theory and that the given reductions are guaranteed to
terminate. The result is that it is difficult for users of
systems that employ this approach to be sure that a set
of reductions captures the intended theory.

The second interpretation overcomes this problem
by maintaining a record of all possible outcomes when
conditions are unresolved, Thus there are sets of re-
ductions that would be incomplete using the first inter-
pretation but that are complete using the second. More-
over, it is decidable whether a given set of reductions is
complete. The decision procedure is an extension of
the test described by Knuth and Bendix [1970]. The
disadvantage of this approach is the exponential space
and time required to maintain this set of possible alter-
natives.

The third interpretation is an attempt at a compro-
mise. That is, because only a single expression is ever
retained, it requires fewer resources than the second
interpretation, Further, more reductions sets ar¢ com-
plete with this interpretation than with the first.

While it is clear that conditional reductions are
necessary and useful, they are more difficult to deal
with formally and practicaily, compared with uncondi-
tional reductions. Our study of three different interpre-
tations suggests that in order to make completeness
decidable we must use a powerful notion of reduction
application, which in turn requires greater computation-
al resources.
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RESOLUTION BY UNIFICATION AND EQUALITY *
vincent J. Digricoli
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Abstract

~ This paper presents two rules of
inference: RUE (Resolution by Unifica-
tion and Equality) and NRF {the Negative
Reflexive Function Rule) which together
are shown to be sound and complete to
prove the E-unsatisfiability of a clause
set S containing neither the equality nor
the functionally reflexive axioms. It
furthermore specifies a hyperresolution
restriction strategy using RUE and NRF
which is complete. A viability criterion
and an equality restriction are defined
which can be used to reduce the produc-
tion of useless inferences.

1, Intreduction

The pre-eminent use of the equality
predicate and the importance of the
equality axioms in logic make it impera-
tive that deductive systems treat of
equality effectively,.

Important research in respect to the
eguality relationship has been carried
out by many distinguished authors includ-
ing Darlington [2]), Robinson and Wos [3],
Sibert (4], Morris [5], Anderson [6],
Slagle (7], Knuth and Bendix {8] and
Brand [9]. More recently Harrison and
Rubin [10] have introduced the concept
of generalized resclution as a method to
more effectively handle equality in
resolutien.

It is the line of research proposed by
Morris in E-resolution and by Harrison
and Rubin in generalized resolution that
we pursue in this paper. We introduce
two rules of inference:

RUE: Resclution by Unification and
Equality

NRF: the Negative Reflexive Function
Rule

which together are shown to be sound and
complete to prove the E-unsatisfiability
of a clause set S5 containing neither the
equality ner the functionally reflexive
axioms. We furthermore specify a hyper-
resclution restriction strategy using RUE
and NRF which is complete. Morris used
paramodulation in conjunction with the
inference rules of E-resolution. In this
paper we rely on a disagreement set
analysis in place of paramodulation.

-
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A clause set S using the eguality
predicate but not containing the eguality
axioms is E-unsatisfiable if there is no
interpretation which satisfies the con-
junction of § with the eguality axioms
which are stated below:

{1) Reflexivity: X = X%
(2) Symmetry: x=y +y =2
{3) Transitivity: X =y Ay =2 - X=2
{4) Substitution in Functions:
Xg = X 7 f("‘xk—l‘xk'xk+1""}
= f(“'xk-l'xo’xk+l"")
{(5) Substitution in Predicates:
Xo= ¥y A P(“’xk—l‘xk’xk+l"")
-+ P("'xk*l'xo'xk+l""}

2. bisagreement Sets

We define a disagreement ged ¢ 2 rairs
of terms as:

if t, and t., are identical only one dis-
agre%ment s%t exists, the empty set.

If t; and ty represent different func-
tions {(a constant is a function of no
arguments), there is only one disagree-
ment set, namely, D = {[tl.tzl}-

If ¢, and t; differ with ty1=f(a},..-r2p},
ty = f(by,...+bp}, then D is a disagree-
ment set of t; and ty if it is the set
of pairs of corresponding arguments

{aj by) which do not match (the topnmnost
disagreement set) or the union of dis-
agreement sets, one from each non-match-
ing pair (ai,bi).

In the example:
t £f{ a, g{a), hig(b}} )
t, = £( a, glc), hig(a)) )

there are a total of six different dis-
agreement sets:

the topmost disagreement set:

Dy = {{gta),glc)), {(hig(b}), higlal)) ]!}
D, = {la,c), [gib), gfa))}
the bottom-most disagreement set:
p, = {ta.cl, {b,all
and also

b, = {fgta),a(c}), lg(b),gla)}}
D5 {[g(a);gfc)]a {bla]}
Office of Naval
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De = {la,c}, Ih(g(b)): h(g(a))]]

We can prove that t; = t, if we can
prove the equality of all ehe pairs in
any one disagreement set., This follows
from the equality substitution axiom for
for functions, We are in fact enumerat-
ing the ways in which t3 = t, can possi-
bly be proven by using this substitution
‘axiom.

We now define the disagreement set of

a pair of complementary literals:
B(S.,+¢0s8_.), P(ty,...,tn) as the union
ip n 1 n

=9 Ty :

D =Y, Dy where D; is a disagreement set
£

(=5 (Si,ti) .

Using the substituticn axiom for pre-
dicates we can state that

P(Sy,ees8,) A ?(tl,...,tn) + D

where P now represents the disjunction of
the inegqualities specified_by any
disagreement set of P and P. In resoclu-
tien by unification and eguality we can
resolve P and P immediately te D.

In our discussion D will represent
either a disagreement set {(aj,by} i=1,k}}
or a disjunction of the inequalities
specified by the disagreement set, namely
E? a, #b,. It will be clear from the

context which D denotes.

3. The MGPU Substitution

We may wish to minimize and if possible
eliminate the disagreement between a pair
of terms by using substitution. In the
case where tj,ty are unifiable, we may
apply the standard algorithm to compute
the most general unifier (MGU} of t;,t;.
Below we have meodified this algorit 50
that when t;,t; are not completely unifi-
able, the aigorithm instead of terminat=-
ing at the first irreducible disagreement
continues to perform further unificatien.
We call the substitution produced by this
algorithm the left-to-right most general
partial unifier of t; and t2 or more
simply an MGPU of tl,tz.

Let W be a non-empty set of expres-
sions. We compute the first difference
set of W by locating the first symbol
{counting from the left) at which not all
the expressions in W have exactly the
same symbol and then extracting from each
expression the subexpression that begins
with the symbol cccupying that position.
The set of these respective differences
is the first difference set of W.

If we resume the comparison in each
expression of W at the first symbol after
the subexpression used to define the first
difference set, find the next point of
disagreement and again extract the corres-
ponding subexpressions, we obtain the set

of expressions which comprise the second
difference set of W. If the elements of W
are not identical, we can in this fashion
construct k difference sets: dl’dz""'dk'
k >1.

Now let us state the algorithm to
compute an MGPU substitution for W.

MGPU Algorithm:

1-S_Etj=1,k=0,wk=w,ck={}.
2. Find 44 for Wy as previously described;

if it does not exist, terminate with
o) an MGPU of W.

3, If d4; contains as members a variable v
and Q term t which does not contain v
then let o,y = 0, V {t/v} and
Wy = Wk(t/v}, i.e. we apply the sub-
stitution {t/v} to W . Set k = k+l and
go to 2,

4. If d; does not contain the above then

let Jj = j+1 and go to 2. ]

4. The RUE Rule of Inference

We now define the first of our two
rules of inference:

"Given the clauses A+P(sy,...:5y) and
B+P(t3,...,ty} and a substitution o,
the RUE rego?vent of g(a + P(s1,...5p})
and o(B + P{t ,...,tn)) is 0A + OB + D
where D is th% disjunction of the
inequalities specified by a disagree-

ment set of the_complementary
literals oP and oP."

¢ may be the null-substitution,the MGPU of
{{sy,ty) i=l,n} or any substitition. The
advantage of using the MGPU is that it
produces the shortest resolvent. The
standard resclution by unification is
simply RUE resoluticn using as o the most
general unifier of {{s,, t,) i=l,n}.

We have the theorem:

{4.1) THEOREM. Resolution by unification
and egquality is sound. :

Proof. The proof follows from the general-
ized form of the substitution axiom for
predicates, namely: :

] N 1
£, = ¢t At =t A e AE =t
k1 k1 k2 k2 kn kn

APlovety conty saaty ose)
kl ko kn . . ' )
+ Plosot, ooty ceaty e

k1 k2 kn .
The arguments of the P literals are identi-

cal except at ty ,t} . This substitution

axiom states that the truth value of a
predicate P does not change if we substi-
tute for one or more arguments of P an
eguivalent term.
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We have the conjunction

{1) {oA + oP(sl,...,sn))

A (0B + c?{tl...é,tn))
and the disagreement set D = U Dy
D; is a disagreement set of (os5;.,0ty).
D is simply a set of pairs,

D = {(di‘di) i=1,%£}. Now either the

terms in each pair of D are egual, in
which case the corresponding arguments of
oP and ¢P are egual and we can deduce

oA + oB from {1) by applying the substi-
tution axiom for predicates, or one or
more pairs in D conta%n unqual terms
and the disjunction Iy di # di is true.

This proves that

here

{oA + P(Sl“"’sn))
A (OB + a?(tl,...,tn)) + oA + 6B+ D

. -2 [
where D is Zl di # di . 0

5. The NRF Rule of Inference

To build-in equality and so eliminate
the need to explicitly use the equality
axioms, we need a second rule of infer-
ence, the Negative Reflexive Function
Rule:

"Given A + tl ¥ t2 and a substitution
o, the NRF resolvent of oA + ctl# ot,

is oA + D where D is the disjunction
of the inequalities specified by a
disagreement set of (ctl,otz)."

Since the most important application of
the NRF rule is the case where ty ¥ t, is
flay,...,ap) # f(bl,...,bn), we have Gall-
ed the rule the negative reflexive
function rule.

{5.1) Thecorem. The Negative Reflexive
Function Rule is sound.

Proof. In the case where t; # t; has the
form f(al,...,an) # £(bl,...,bpn} the NRF
rule is “derived from the eguality substi-
tution axiom:

A= Xy *+ f(...xk_l,xk,xk+1,...)

= f("‘xk—l’xo'xk+l"")
which states that a function does not

change its value if one (or more) of its
arguments is replaced by an equal.

If in oA + f(cal,...,oan)
¥ f{oby,...,0by) all pairs

agreement set D of the inequality can be
proven egqual then by the substitution

in the dis-

axiom f(oal,...,can) = f(obl,...,cbn)

since corresponding arguments are equal.
This erases the ineguality in

oA + f(cal,...,can) # f(cbl,...,obn)
leaving oA. If on the other hand one or
more pairs in the disagreement set cannot
be proven egqual, then the conclusion is D,
the disjunction of the inegqualities of the
disagreement set. So we may validly
conclude:

oA + f(cal,...,aan) # f(abl,...,cbn)

+ oA + D . O

The following is an example of an
application of the NRF rule using the MGPU

as o
£{x, g(b), hia)) # £{a, gi{x), h{b)]

NRF

Mepy” 2 7 P
And similarly by using_RUE,
P(f{x,g(b),h{a))} and P{f(a,g(x},hib})}
resolve to a ¥ b.

6. Completeness of RUE and NRF

We define an RUE-NEF deduction as:

"Given a set of clauses S, an RUE-NRF
deduction of ¢ from § is a finite
seguence Cl,Cz,...,Ck such that each

Ci either is a clause in S or an RUE-~

NRF rescolvent of clauses preceding Ci
and where C, = c."

A deduction of the empty clause from §
is called an RUE-NRF refutation of 8. In
[11] we prove the following completeness
theorem:

(6.1} Theorem. A set of clauses S is
E-unsatisfiable if and only if there is an
RUE-NRF deduction of the empty clause from
s.

The proof of completeness is obtained
by showing that any refutation using the
equality axioms with resolution by unifica-
tion can be restated as an RUE-NRF refuta-
tion without the equality axioms. These
axioms are removed by relatively simple
transformation rules.

7.

As an example, let us show the RUE-NRF
refutation of the clause set:

S: 1. a=0b

2. «¢© b
3. g,la) = 91(6)
4. Plapte))

5. Blgile))+
g(f[h(a)rxuh(x)}}#g(f[h(b)rcrh(a))) *

45




*

The reader is invited to prove the
E-unsatisfiability of 8 and to count the
number of times particular equality
axjoms are used in the proof. Below we
have the refutation by RUE-NRF:

P{g,(c)) ?(gl(e))+g(f[...]) #glfl...})

‘y

g, (e} # gyle) + glfl...1) # glfl...]1)
rue g,lal = gy(e)
c¥a + giffhia},x,h{x)})#g{f{h{b},c,h{al})
l nrf with ¢ = {o/x)

c#a+a#hb {merging into c ¥ a)

o

c
ay¥b
l/a
D

In the proof we uniformly used the
MGPU and the bottom-most disagreement set
since it was advantageous. Merging was
also performed. The equality axioms do
not appear in the refutation since they
are incorporated into the RUE and NRF
rules of inference.

To appreciate the simplicity of this
proof of 5 steps, one should examine the
corresponding procf using the equality
axioms with resolution by unification.
The proof contains 16 steps. An equiva-
lent paramodulation proof has 10 steps.
The RUE proof is not only shorter but
more transparent.

{merging into a # b)

1
o

B.

In respect to the definitions we have
given there are some important guestions
to be considered.

In both RUE and NRF what substitution
should be chosen? Choosing the MGPU will
produce the shortest resolvent since it
minimizes the disagreement set produced.
However, the following example shows that
the exclusive use of the MGPU will some-
times prevent the generation of a
refutation. The clause set S:

S: (£(x),g({y)} + Pthix), i(y})
{(f{a),g{b))

{(h{b),i(b}}
{a} = £{c)
{c} = hi{b)

1. p
2. B
3. P
4. £
5. h

is refutable only if we use the substitu-
tion ¢ = {¢/%, b/y} and here we cannot
use the MGPU in resolving P and P if we
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are to obtain a refutation. The RUE refu-
tation of § is:

Pthi(x),i(y}) + PL{E{x),gly})

o = {b/y}
P(hib),i(b))
—
hi{x) # hi{b) + P{f(x),g{b))
c = {¢c/x}

hiec) # hib)
P(f{c),g(b))
Bifia),gb))

—
f({c) # f{a)

IL____——fif) = f{c)

0

In the first application of RUE the
regquired substitution is ¢ = {b/y} and not
the MGPU ¢ = {b/y, b/x}. Hence, for
completeness we must do more than use the
MGPU. The algorithms we state in (12.1)
and {13.2) resclve this issue to success-
fully preserve completeness. In algorithm
{12.1) the null substitution is used until
the algorithm determines the substitution
required for a refutation,

Irrespective of what substitution is
chosen for RUE and NRF, there is the
further problem of choosing a disagreement
set, We would like each time we use RUE
or NRF to be able to choose only one dis-
agreement set and yet preserve complete-
ness. If a resolvent is to participate in
a refutation, then the disagreement
inequalities must be erased by positive
equality literals appearing in 8§ or deriv-
able from S. Later we will use this as
the basis for a method to select D.

What appears to be attractive, i.e., to
select the bottom-most disagreement set,
will not always work as is evident in the
following simple example:

S: 1. P(f{a)) 2. B(f{(b))

Resolving P{f{a)) with P{f(b}} to obtain
a#b is useless. Here we must use the
topmost disagreement set in order to
obtain a refutation.

3. f{a) = £(b}.

9, Selection of a Disagreement Set

First consider the lemma:

{9.1) Lemma. A necessary condition that
t; = t, can be proven in §, a clause set,
is that:




(1} the literals appear in S
) ] 1
{ry= xy0 0= TpueresXy= rto kz1
and there is a substitution o such
that in

= ' = ! =gyt
{ory= ory, or,= orz,...,crk—ork}, k>1

we have that tl = ory or tl and ory

represent the same function whose
corresponding arguments can be proven
egqual in S. The same is true for

(or%,ori+l), i=1,k-1 and for
{crk,tz).
or

{2} tl = t2 has the form f(al,...,an)
= f(bl,...,bn) where a; = bi can be

proven in S, i=1,n.

The lemma is true because to prove an
equality relationship we must  use the
positive eguality literals appearing in 3,
together with instantiation, transitivity
and substitution of equals in functions.
Actually more is involved since in the
clause A + Sy = Sy to take advantage of

s we must erase A. The above is a

=5
1 2
necessary but not sufficient condition
that we ¢an prove tl = t, in 8.

Note that in the lemma we state that
the transitivity link between or = or;
1
= Or,

i
1

and ory.y i+l must be that or, and

Orin are either identical or match on

function symbol. It is this property
that. we intend to use to define a restric-
tion for the application of RUE and NRF.

We now apply this lemma to a refuta-
tion using RUE and NRF to establish the
definition of a viable disagreement set
or a viable resplvent and also to define
a restriction for RUE when applied to a
complementary pair of equality literals.

An RUE or NRF resolvent is viable,
i.e. oan possibly partieipate 1in a
refutation, only if it satisfies the
condition that:

(1) For each 5 # t, in the disagreement

set of the resolvent we have that for
s; there is a term a which is the

argument of a positive eguality
literal in S such that 8 either

unifies with @ or matches a on
leading function symbol with (si,a)

having a viable disagreement set.
The same is also true for £y and some

other term b which is the argument of
a positive eguality literal in 8.

47

In the case that there are some s.7¥ t.
which do not satisfy the above, Tineh
the set of these inegualities has a
MGU which converts their logical sum
to the empty clause.

{2)

Furthermore, the substitutions used to
satisfy the above condition must be
compatible so as to form a single compo-
site substitution. The empty disagreement
set is always considered viable.

The above is a necessary but not suffi-
cient condition that we can prove s; = ti'

i = 1,k in § and thus erase these ineguali-
ties in the resolvent.

Consider the example:

S: 1. £(x) = b 5. P{f{a))
2.b=c 6. Plg(d))
3.c=4 7. Bigta))
4, d = g(b)

1f we resolve P(f{a)) with P(g(d)) we
obtain f(a) # g(d} which is viable since
fla) unifies with f(x} in (1) and g{4)
matches-on-function-symbol with g(b) in
{4) with @ # b being viable. We can in
fact refute S by resolving P{f{a}) with
P(g{d)). On the other hand, if we
resolve P{(f(a}) with P(g(a}) we obtain
f{a) # gla) which is not viable. We can-
not refute S by resolving these clauses.

We may now state our

{9.2) Rule for Selecting the Disagreement
Eet in RUE anc NRE:

*In resolving P(sl,...,s ) and

P(tl....,tn) by “RUE or'in reducing
£y 7 tsy by NRF choose as D the topmost
viable disagreement set.”

We choose the viable disagreement set
nearest the topmost as D because by using
the NRF rule we can derive from D any
lower level viable disagreement set in
case it is needed for a refutation. When
none of the disagreement sets in RUE and
NRF are viable, then it is useless to
form the resolvent because it cannot
appear in a refutation. Our rule of
selection will yield either one or no
resolvent when we apply RUE and NRF.
Furthermore, the rule retains complete~
ness.

The weakness of the viability test
lies in the fact that when S contains
the literal x = y or the literals x = t
ang y = t' then all inequalities become
viable and the filtering effect is lost.




"

10. The Equality Restriction for RUE

We now formulate the equality restric-
tion which applies to RUE acting on
complementary equality literals:

*mhe RUE resclution of A + s, = &5, and
B+ t; # t is permitted on}y if"at
least one pair in the set
{(sl'tl) (Slrtz) (Szltl} (Szatz)}
unifies or matches-on-function-

gymbol. In the latter case the pair
must have a viable disagreement set."”

Hence, to resclve equality literals we
must satisfy both the above eguality
restriction and be able to select a top-
most viable disagreement set., These two
conditions appear similar but they are
not the same. In finding a topmost
viable disagreement set the matching by
unification or matching-on-function-
symbol need not occur as described above
but may take place with other literals
of S.

Consider the E-unsatisfiable set:
S: 1. a#b 3, a=e 5 b= f
2, e=4d 4, e =_C 6. £ =24

a ¥ b should not be resolved with ¢ = d
because the eguality restriction is not
satisfied even though the resolvent has

a viable disagreement set. Out of the
five candidates which resolve with a # b
only two satisfy the equality restriction,
namely a = e and b = £, The RUE refuta-
tion of 8 can be achieved within the
constraints of the eguality restriction.

The equality restriction is compatible
with completeness because if tj # &t is
to be erased in a refutation then by
Lemma {9.1) we need only take advantage
of the transitivity chain r;= rj, rp= T3,
.+..y= 1, which exists to prove tj = t;

or first apply the NRF rule to t; # to
and afterwards use transitivity.

The equality restriction as stated for
RUE will permit us to resolve t; ¥ t)
with ry= r) using a substitution ¢ to
obtain the disagreement ty ¥ orj , which

is permitted to resclve against or, = 0r2,

leading to the ineguality t, ¥ orj, until
finally we get tz ¥ orgy. This laSt
inequalit¥ is handled by the NRF rule if
t, and ory are not identical. Also the
possib}e En .

1L Y ¥ or, are handled by the™ NRF
rule. We are saying in effect that the
equality restriction permits traversal of
any transitivity chain which may be
regquired in a refutation.

This restriction on RUE resclution of
complementary egquality literals should

egualities tél# ory, Or) 7 ory,

prevent a good number of unneeded resclv-
ents. Since both RUE and NRF generate
inequalities, the above restriction is
important.

1.
Let us now return to our previous exam-
ple and apply both the viability and
equality restrictions. We have

S: l.a=Dhb

2.b=c¢
3. gyle) = gpla)
4. Plg,ie))

5. B(glle)) +
a(£1hla), %, h(x)1)Fg (E[h(B) e, htal])

P(g,{c)) can resolve against P(gjle))
becausé the single existing disagreement
set {{gy(c),g;3(e}l} is viable. However
(1) g(flhta),x,h(x)])# g(f[(h(b),c,h(a)])}
cannot resolve against clauses 1, 2 or 3
because the equality restriction is not
satisfied. But we can apply the NRF

rute for which we must select a topmost
viable disagreement set.

Suppose we first apply the MGPU substi-
tution {c/x} to (1) and then find D. We
have the topmost disagreement set:

D= {(f[h{a),c,h{c)], fihib},c,hia}})]

which is not viable: then proceeding to a
lower level:

D= {th(a), h(b)), {h(ec}, hia)l}
which is not wviable. Finally

b, = {[a,b], {cla]}

3

the bottom-most disagreement set alone is
viable. Hence

(1) +af#b+c#a
We have thus far deduced:
B(g(e)) + g(fih(a),x,h(x)]
# g(f[h(b),c,hia)])
rue Plg,(e))

g, (e} # gyfe) + g(flh(a),xh{x)])

# g(f[h(b},c,h{all}
nrf with o = {¢c/x]}

gl(e) # gz(c) +agb+c#a

Now gl(e) ¥ g,{c) by the equality restric-




tion is allowed only to resolve with
g, (e) = gyla) yvielding ¢ # a, so that we
now have after merging:

c¥a+a#b

which is easily reduced to the empty
clause. In this example a level satura-
tion algorithm using the eguality and
viability restrictions would converge
rapidly to a refutation.

A Level-Saturation Algorithm
for Applying RUE-NRF

12.

The proof of completeness of RUE-NRF
given in {11] is based on the existence
of a composite substitution which is
obtained from a refutation using resolu-
tion by unification on the conjunction
of & with the eqguality axioms. Whatever
algorithm we use to apply RUE-NRF must be
capable of generating this substitution
or one which is logically equivalent in
the sense that it too leads to a refuta-
tion.

Wwhen we apply RUE or NRF a substitu-

tion is used (possibly the null substitu-
tion). Using the MGPU at each step of

. RUE or NRF leads to the shortest resolv-

ents but unfortunately as the example
in {8) shows, the substitution required
for a refutation need not be the MGPU.

The following algorithm preserves
completeness by postponing substitutions
until the full effect of eguality rela-
tionships can be realized.

{12.1) Level Saturation Algorithm:
(1} Given &, set s7l = (1, s = s,

{2} Using only the null substitution form
all possible RUE-NRF resoclvents from
a_pair of parent clauses taken from
$1 where at least one parent is in
si - gi-1 and where:

{a) the disagreement set of the resol-
vent is the topmost viable
disagreement set

{b) when RUE is applied to a comple-
mentary pair of equality literals,
the equality restriction is satis-
satisfied. The symmetry of egual-
ity must be exploited.

i=20.

{3} If a resolvent in (2} is made up of
negative equality literals, test for
an MGU substitution which reduces the
resolvent to the empty clause, i.e.,

the resolvent has the form }T s;# t;

and ¢ exists such that in [y os.# ot,,
each pair {os,,oct.) matches . *
identically. + .
If this ocecurs, terminate with the
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refutation based on the substitution
a. If not, proceed to (4).

Let s+l = g* U {resolvents produced
in (2)}: let i =i + 1 and go te {2).
O

Consider the E-unsatisfiable input
clause set:

S: P(f(x}, gly}) + Pin(a), i(y}}
B(f{a), g(b)

B(hi{b}, i{b})}

f{a) = fic)

. hiec) = h(b}

{4)

U o L ) =

Note that the substitution reguired for a
refutation is {c/x, b/y! and that it is
not the MGPU in either of the P, P
resolutions.

The procf generated by the level
saturation algorithm for 5§ is:

PE(x), g(y)) + P(h(x), i{y))

P(hib), i(b))
:

P(E{x), gl(y)} + hix) # hib) + ¥y # Db

hi{c) = h(b)

P(f{x), gly)) + h{x) # hic} + y # b
L —

f(x) # f{a) + hi{x} #hi{c) + ¥y #D

(merging inte y # b}
L#_———" f{a) = £{c)

f{x) # £(c} + hi{x) # hic) + ¥y # Db

_Bifta), g(b))

which vanishes when o = {¢/%, b/y} is

applied.

13, RUE-NRF Hyperresolution

Suppose we are given 5 to prove
E-unsatisfiable and that it contains
neither the eguality nor functionally
reflexive axioms. We partition S into
two subsets: E, the electron set, con-
sisting of positive clauses, and M, the
nucleus set, containing the nonpositive
clauses of S. A clause in N must have
at least one negative literal. Let P be
?ny ordering of the predicate symbols

n S.

We define a elash denoted by




{El'EZ""’E ,Nj]

q

where E; € E and N; € N as representing
the succession of JRUE-NRF resolvents:

(Eerj} -+ Rl

(E +R__,} = R {the clash"

q'"g-1 resolvent)

where each Ry is obtained either

(a) by RUE of E; against R;_, where
we must resclve on the largest
literal in E; in accord with the
P-ordering

or

{b} by applying the NRF rule to a nega-

tive equality literal in Ri-l'
R must be a positive clause and Ry

i < 3g, will be nonpositive. Note that g
is greater than or equal to the number of

negative literals in N. as both RUE and

NRF may add negative e%uality literals to

We understand that in the
one or more of

a resclvent.
notation {E,,...,Eq/Ni}

the E; may “be replaced by the NRF rule.
The substitution ¢ used in RUE and NRF is

unrestricted and may be null.

We define an RUE-NRF hyperresolution
deduction. as:

"Given a set of clauses S, an RUE-NRF
hyperresolution deduction of C from 8

is a finite sequence C;,C3,....Cx such

that each C; either is a clause of §
or an RUE-NRF clash resolvent of

clauses preceding Ci and where CkE c."

A hyperresolution deduction of the
empty clause from 8 is called a refuta-

tion of § by hyperresolution. In [l1l] we
prove the following completeness theorem:

{13.1)} Theorem. A set of clauses S is
E-unsatisfiable if and only if there is
an RUE-NRF hyperresolution deduction of
the empty clause from 5.

The proof of completeness is obtained
by showing that any hyperresclution refu-

tation using the eguality axioms with

resolution by unification can be restated
as an RUE-NRF hyperresolution refutatien

without the eguality axioms.

We now state an algorithm for RUE-NRF

hyperresolution:

(13.2) RUE-NRF Hyperresolution Algorithm:

{1) Partition the input set § into 0+ N
set i =0, AE= {}, aN = { }, Let P

be any ordering of the predicate
symbols in S.

1]
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(2}

(Ey o

For each nucleus N5 € Ni form all.
possible clashes gf Ny against E! as
follows:

Using the null substitution, resclve
by RUE-NRF on the k negative literals

of Nj:

D.

+D1) - R, + i

1
k=1 L

Re-1* § Dy TR

b,
1

L et POl R ] V]

In RUE we must resclve on the highest
literal of Ej as specified by the
P-ordering. Dj represents a disagree-
ment set and Ry is a positive clause.
o the null substitution ig ufed a3
each step. When RUE or NRE is applied
we choose the topmost viable disagree-
ment ‘set and when we perform RUE on a
pair of complementary equality
literals, the eguality restriction
applies.

If Ry + Ei D; is not positive, we add
it to AN which in effect continues the
clash later on.

We compute the MGPU of Ei Dy . call it
o. (i.e., }X D; correspofids to the

disagreemen% set U1 Dy which is a set
of pairs {(di,di) i=1,2}; ¢ is the

simultaneous MGPU of each of these
pairs; it corresponds to the MGPU we
would obtain for the pair of terms:
f(dl,...,dR) and f{di""’di)')

If o [§ D; vanishes, place cRy in E

and if this clause is empty we termi-
nate with a refutation.

If o [§ p; does not vanish, we place
k :
OR, + o]7 Dy into AN.

Using all pogsible combinations of elec-
trons from E' against N; , we generate
all possible clashes with N4 as nucleus.,
We do this for all Ny in NT

{3}

{4)

If both AE and AN are empty, the
algorithm terminates without a refu-
tation.

set i= i+1, Y = £i"1 U ap, nrentTt
U AN, 8E = { }, AN = { }.
Go to step (2).

o

In our algorithm we have used in

parallel both the null substitution and




the MGPU. The null substitution is neces-
sary to preserve completeness and the
MGPU enhances efficiency by producing the
shortest resolvents. 1t is not necessary
to apply both substitutions in parallel
and thereby produce tWo resolvents in

each application of RUE and NRF. It is
possible to interleave the use of the null
gubstitution Say every kth cycle of
jteration. Exactly what is the best mode
of interleaving can be better determined
after experimentation with a theorem
prover using the above algorithm. This
work is currently in progress.

14. conclusion

The essence of this presentation has
been to accept equality as being as
important as unification in resolution and
to define resolution in terms of both
equality and unification.

A theorem prover using RUE~NRF hyper=
resolution has been implemented and is
currently being used on the experiments
proposed by McCharen. overbeek and Wos
{1}. These experiments will provide &
pasisz for comparing the effectiveness of
RUE-NRF with various restriction strate-
gies_using resolution by unification and
paramodulation. These results will appear

in [111.
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Appendix

Below we have & comparison of an RUE-
NRF proof of 5 gters compared to the
equivalent proof using the equality
axioms and resolution by unification
which has 18 steps. We are speaking of
the clause set s and refutation presenteé
in (7) as compared to the refutation
given below.

For this proof S is expanded from £ tC
16 clauses to -include the equality
axioms:

5: l.a~F b
2. c=Db
3. 92(a = glte)
4. P(92(C))
5 ﬁtgl(e)) +

g(f[h(a).x.h(x)])
# g{f[h(b},c,h(a}])

6. % = %

7. x Ay *y=X%

g. x ¥y *t Y £z + % =2
g, x # ¥y t Bix) + Piy)
10. xfy + gtx) = giy)

11. x#y + 9,(x} = % v}
12, x#y ¥+ 9 (X} = gzty)
13, x#y + hi{xl = hiy}

Y

14, x#FR' O+ f(x.y.z)=f(x',y.z)
15, y#FyY' + f(x,y,z)=f(3.y';23
16, z#2’ + £ix,y,2)=f(x,¥.2")



Refutation:
(4} Plg,(c)}

F— (83 Bix) + Ply) + xsy
(Rl) Ply) + g,(lc)#y

— (5) Blg;(e}) + glfl...1)Fg(£L...))
(R2) gyle)fgy (e) + glfl...)#g{El...])
— (8) X¥y + v#z + x==z .

(R3) gylelfz + g,(c)fz + g{f§...l
#gifi{...}

)
— (3) g, (e)=g,(a) )
(R4} gyle)fg,(a) + g(El...1)¢g(E]...])
{B) ¥y + y#Fz + x=z
(1} a=b

{R5) b#z + a=z

— (2) bec
(;6) a=¢

f“ {12) x#y + g, (x)=g, (y)

— (R7} gz(a)=92(c)

(R8) g{fih(a),x,n(x)])#g(£i{h(b),c,h(a)])
L—-(lo) xgy + gi{xi=g(y}
{R;) f{hfa),x,h{x)1# f[hib},c,h{a)]
{13) x#y + h(x)=h(y}
~— (1} a=b
{RLC) h{a)=h{b)
— (14) x¢x' + £(x,y,2)=f{x',y,2)
(R11} f(h{a},y,2) = £[h(b),y,z)
— (8) ¥y + yfz' + x=z'
(R12} f[h(b),y,2]¥z' +£f(h(a),y,z}=2"
(13) x#y + h{x)=h(y)
}— {R6) a=c
(R13} hia)=h(c)
¥—_(15) z=z' + £(,y,z)=

£(x,y,2")
—— (R14) £f[x,y,h{e)}=f(x,y,h(a)}]

— (R15) flh{a},y,h{c)i#E[h(b),y;h(a))

{R186) ] The empty clause,
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Not ccunting the symmetry axiom the
above proof has 16 steps.

Now consider the RUE proof we used in
{(7):

{4} Plg,(c))

— {5) ﬁ(gl(e})+g{f!...})#g(fI...])
(R1}) g,(cl#g,le) + glf[...])#g(f]...])
— (3} g, lal=g, (e}

{R2} cfa+g{fihla),x, hix))i#
g{flh(b),c,hia)})

NRF with o = {c/x}

{R3} c#¥#a + a#b (merging into c#a)

— (2} c¢=b

(R4) a#b {merging into agb}
’— (1} a=b

{R5) ; The empty clause.

The RUE proof is both shorter and more
transparent. One can read it and much
more easily see the basis for the refuta-
tion. These attributes of brevity and
transparency will probably lead to more
effective heuristics for RUE-NRF theorerm
provers.




REDUCTION-SYSTEMS AND SMALL CANCELLATION THEORY
Hans Bocken
RWTH Aachen, Germany

SHMMARY: We obtain a (finitary) sufficient condi-
tion for the gsolvability of the wordproblem using
systems of reductions. AS corollaries we get some
classical results on spall cancellation groups.

Let m:{xl,xz,...,fi....fg ,(fl,..,fn,..,fn})

be the absolutely free algebra of type {Or: 014, ¢y
...,dm), gensrated by {xl.x2,...,fl....,fn}. The
%, are called variables, the fj functions of de-
gree dj' fi' ""fn are the nullary functions, also
called constants. The elements of TERM are called
terms; a subterm of the term ¢ is any term, that
is contained in T. If T contains no variables,

then T is a ground term. 2 finite system &%,
S CTERMXTERM is called a reduction-system.
For a mapping € of the yariables into TERM, its

homomorphic extension repe:TERH-#TERM is called a
substitution. When two terms 'I‘1 and T, are unifi-
able, the most general unifier can pe found by the
unification algorithm [RO 68] . T, is called an
immediate reduction of T, with respect to®, de-

noted T-—aTz(&) . Iin case T2 is the result of re-

placinglone occurence Of repe(L) as a subterm in
T by repg(R) for some reduction (L,RER. nty is
the transitive closure of "—%.

A set of reductions has the finite termination-

property {FTP) if there is no infinite seguence
Tl—a'rz-—»'ra-—) ... of immediate reductions. T is
.called irreducible, if there is no immediate re-
duction of T. N WK = {H| HOT ) u W)

Irred(W,@) := (RIWe¢N(W,8), W irreducible}

Let & have FTP, then there exists an algorithm
which computes an element Welrred (W, R) and which
always terminates. If Qg is such an algorithm,
then Irredq (W) := .

® has the Church-Rosser-property, if for any T
and T,, T,k A‘(T,&.}#S(TP@)\S(TZQW $. (Scmetimes
this property is called confluence fan 77). R is

complete if (R has FTP and CR (Church-Rosser-prop.)

E(6N := {L®=R | (L,RER] is the equational system
, belonging to. W= wz(s) LEE W, and ¥, belong to

the same congruence class relative to the equa-

tional system E. The wordproblem with respect to E
is the problem of deciding w1=w2n:) for two given

terms WI, Hz.
for most of our theorems proofs are omitted,
their proofs can be found e.g. in: [KN-BE 70,,
mo 77}, (RI 78 .
Theorem }:
®Ris complete = The wordproblem with respect to
E({5) is solvable.
one is interested in orderings } o©f TERM which
are compatible with substitutions,t.s. TH U impliss
repe('r)} repg(v) for all . An important class of
such orderings was introduced by Xnuth and Bendix.
Although this ordering can be modified in various
ways we use the original definition because it is
sufficient for our purposes nere.
First one takes the function Wi (f1 ves .fm} = PO
s.t. 1) w(fj)) o if j&n
ii} “(fk)> 0 if k¢{m and dk = 1.
w is called a weight-—function.
Let w, be the minimum weight of a constant. We
define the weight of an arbitrary term as
wiT) 1= W' ﬁln(xk,'x‘)tl};mw(fi)n(fi.'r) '
where n{x,T) is the number of occurences of x in T
Let us say Th U iff
(1) w{THw(v) and n(xk.T}) n(xk,u) for k3l
or {2) w{T}=w() and n(xk.T)=ntxk.U) for k)i
and either T = fm(fm(. ..(fm(xk)..) P 0 =%
or T = fj(Tl""de)' U= fk(Ui,...Udk)

and either {2a) I*k or
{2b) 3=k, Ty=Uyr e s T =S00 Tp+1} Ut
for some p, 1 & p(dj
if £ = {vsRIiL, RETERM) is a finite equacional

system, B, (E) = {(L,R} | LYR, I=RCE or RxL{E}.

Theorem 2:

§)" ¥ restricted to ground terms is a {total}
well-ordering.

A1) %{B) has the finite termination property.

For two terms Li’ L2 we define

superpos(Ll,Lz) = {WIW = repe(Lx) , repg is most




general unifier of L2 and same
subterm T of L}
For Wesuperpos (L, L, with (L, ,n 0, W, imme-
diate reductions of W by {L /R, y, i€, 2} (wl,w)
and ‘"2'“1’ are called critical pairs belonging

to W.

Example:
(L R} = (£(a,gix,b)}, hia,b)) x—f{a,b)
(L,.R,} = (glfta,blyh, g(y,al) Ty—eb

W = fla,g{f{a,b),b)}
W o= h{a,b) fla,g{b,a)} = W,

superpos (T8, S¥,) = (J (superpos (L, +L,) i L& 1Y)

.= {L 1| (L,RIER for some®R)

Theorem 3:

I£ Irreda&(wl) - Irreda&(!-!z) for every critical
pair (wz.wz} belonging to Wesuperpos (L&, LR},
then the wordproblem with respect to E{R) is

solvable.

In case a reduction-system R is incomplete, this
theorem shows how one ¢an try to “complete" the
system: If ¥, = Irredgg{W,) and Y, = Irredgo(Wals
Yl # Y and Y1 and Y2 are comparable, then add
{y .22) to®R for ¥ }y (resp. {¥,,¥,) for ¥ RATRE
(Knuth Bend:.x-extension-—algorithm [xN BE 70})
¥nuth and Bendix take as an example the algebra
TERM = {{x,¥.2, 13y eeerdy 1€}, (e,ai....,a ,".",“-1'*»
of type {O;...,0,2,1), choosing the followlng
weights: wie} = 1, w(ail = 1, wi*) = Q, wi™ ) = 0,
The equatjonal system is E = {ex=x x Lxee,
(x-y)-z=x « (y+ 2]}
They succeed in completing &, (E) (after omitting
unneccessary reduct.ions) to
& = ((e-x.x), x Ix,e), (@ey)ezoxely z)},(e 1y
Loy, e (x0T iy,
(x-e,x}, s Lie), ((xey) 1.y Y i)}.
thus solving the wordproblem for free groups.
Because of this, T L Irreda%.{’r_l) is uniquely
defined, independent of the algorithm (IQF
In the following we will always deal with this

algebra TERM and the above described ordering.
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Remark 1:

The following terms are not subterms of T:

i} ((TI-TZ}TB) for arbitrary terms Tl' Tz, '1‘3

ii) § *, except for Sc{al,...,an)
iii) e, except T = € (
iv) ses7%, s s for arbitrary s.

Therefore T can be written without brackets. A
term written in this way will be called a wecrd.
The weight w(T) will be denoted by iT1, Because
of the above chosen weight, for T = bl' ...-bm,
boelay, .08y ,all,...,a'lj, [Tl = m.

3
T =Db e b is called cyclically reduced if

1

bm is not inverse tc b1 of words is

A subset ¥
called symmetrized if all elements of ¥ are
cyclically reduced and for each Te¥ all cyclic
permutations of T and T~1 also belong to ¥
Suppose ‘I'1 and '1‘2 are two distinct irreducible
(with respect to &F} elements of the form

1 " BC!' Tz = scz. Then B is called a piece of 7.
Let A be a positive real number, ¥ cyclically

T

reduced., We define:
¥ satisfies C' (X} :
piece of ¥ then |BICABI.

T satisfies T(h): Suppose Sl""‘sh is a sequence

of elements of ¥ with no successive elements Si'

If ScY¥, 8 = BC where B is a

Si+1 an inverse pair., Then at least one of the
products 51'52' S:'!S:,.,....S};‘S1 is irreducible with .
respect te &F' i

Theorem 4: (Dehn, Schiek, Tartakovskij, etc.) !

G = (ai, veard IX), ¥ a finite symmetrized set ‘
of defining relations and § satisfies C° (/) or ‘
c (/) and T{4). If WG and Wze(¥), W ¥ e ‘
irreducible with respect to‘& then W contains

more than half of some element of ¥ |

Theorem 4 presents sufficient conditions for the
correctness of the classical algorithm of Dehn
(if U-VEY for |Ui»{vl then Dehn's algorithm
allows to replace U by v'ly. see e.g. [Ly-scHV 77 [
our aim is to prove this result by means of
reduction-systems. Let G = (e.l,...,anlz‘) be a
finitely presented group s.t. ¥ % ¢. ¥ shall
satisfy C' (1/2) . Put Myi= {sx=x | Se ¥} We want




to complete &KB(H } relative to IRF.
wWe define inductively & sequence &i of reduction-
systems:
&, = RKB(MF}' For 10 we take
Rl {trg .7y 1oy emy) critical pair belonging
to some Mtsuperpos(L&P,L&i)}
Irred(P) := ((Ir"'Edﬂ@pu&i(Ti)'I"ed"‘&%pu&i('rgm
(-rl.'rz)a?i}
N{F)) = {1y, 7)) b ¥ Tp T, $Tys (T4 Ty) OF
('1‘2,'1‘1) element of Irred(‘Pi)}
Gyn 1T (T, /Ty | T3 Ty Ty = IrredaglTy) je{1,3
(_'1;1 sz)E&iUNPi or (TleleiUNpi
where % = 'RFUG%iuN'Pi\ LIRSV (TZ'TI)}

Theorem 5:

Suppose G = (@1 .anW) , ¥ symmetrized and
satisfies C' (1/2) . Then:

For some n we get
&, = {uoRe), @R | LR = seB) it satis-

£ iesofurthermore H
o &n +1 g&n
o Q ol
ii) a) Is (L.R)é&n , L=1'b=(Rb .L')c&n
o o
p) Is (L,RX®, s L = bL' = (b RN
o ©
Remark 2:

Theorem 5 gives an example where the effect of
some relatively complicated applications of re-
duction-systems is of simple group—theoretic
nature. Another example is ”smnmetrizing": Just
as one can “symmetrize a set ¥ of words", the
above algorithm “gymmetrizes" a set of reductions.
1f one analyses the role of reductions of the
form {(Lx,Rx}, one sees that in the groundcase they
are unnecessary if one omits the brackets. For
reason of simplicity we will omit the brackets as
well as these reductions and call the remaining

system Ry and put Rw &Fu &5-.

Remark 3:

any algorithm (lgis an extension of Dehn's algo-
“rithm; it is a proper extension, because reduc~

tione (L,R} with [L{ = |R] are also allowed.
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Remark 4:

As the word 5. {e:5) will always be reduced to
Irreda&(S) , we will not Aaistinguish between 5, e-S
and §-e; for example A-e-B will be called irre-

ducible if A-B is {rreducible.

Lemma 1l:
Suppose ﬁ'i'-ﬁi)’ ('i'j.'ﬁ'j)EQK. H!superpos(ﬁi.l,j),
and (wl,wz) eritical pair pelonging to W.
Then: L, = LjAs 'iij = AL ,~A e 1
= € . P
W= LAL, LA {Ribj, LRy
(Zi“ﬁi) ' ('f.j,'ifj) are called reductions belonging

to W.

The proof ig by inspection.

pefinition:

Let ml,wz) pe a critical pair pelonging to
Wt»superpos(L&x,LRx) . A seguence (xn,Yn, ‘e ,XD,YO.W)

{5 called a superpos-deduction—chain of length n

if: i} If n = O, then X, = Wi Yo ¢ Irreda&fwi)
i) If n ¥ O then each xl. o¢lgn is of the

form X . nez -...'L-z"l’x'-z'.'l-x,.-...'z”‘-L..
Sl Wit i 21 3 b

k-1 1 30 % e 7t m-1 °m
k4m = 1, for some words Zg zj possibly equal
5 t
to e and some words L; Lj not egqual to @y
] t

subject to the following conditions:

~
: 1
either i) X, ¥ Li;(zi Ry g and

] k-1
i4) Ly z';l P A z';‘ is irreducible
X “k-1 170
iii) Z? ' reducible with respect to ’RF
k-1
or Z = e,
1k-1
F ~1
iv) For Y, = Trredgy, (2, " ¥,_ } we have
1 CREEHINS
L -YF is reducible with respect to
ik 1
(X, R, 1e8y
ok

F
v} Yl = IrredQR(Li;(Yl)

~i
or 11y X, = X, _0&, .1, , and
1 11 Sp-1 jm
11 zg*-r..-...-z’.‘1 .. is irreducible
o % Ig-1 'm




iii*) Yl_l-z'.'l reducible with respect to RF
‘-1
or 2. = e
Jm-—l i
iv') For Yi = Irredq (Yl_l-z'j"l } we have
QF m~1
Y?Lj is reducible with respect to
I
(.I: ,g. )(&K
Jm Jm
F
! = »
v') Yl Irredu&(Ylem)

(Y‘i ,AR‘i } {resp. (L. ,E 3} are called reductions
i3
k Tk o "l

helonging to Xl .

1f Xn =0 YOU we put xn(wz) t= UIWZUZ'

1 2

Example:

(L];_Ak,xk)easfor xe{o,1,2}, (AiLi,Ri)EQ.Bfor i€ {4,5)
(A Ly Ry} Ry

W= Bghgly  LohyLA b Ly W, = LR,
T—
W1= ROL3 L2LIR°L3L4L5 L2L1LOR3L4L5= x4 (Wz}
]
You MUy Tply AU KTy
X,= LAU  LRULLS X () = LLR,
L
Y1= Uihd L2U134L4L5
48
Xp= LAy UGk, LUiRgly X, (Ry) = L LRI,
=
Ty VR LyUsAsky
55
Xy LA UL Ly LoUpRs Ry{Mg) = LiLR.L,L,
.= A0, 13,0,
-
X4= LzLiﬂiuoLdLs R2U3 x4(W3) = L2L1L°R3L4L5
.
Y=Y Yy
Remark 5:

~

The z';'l (or the zjl) just express that a part of
b4 m
Yl-i is possibly cancelled by the reductions of
-1 - F
{tx vx ",e)y (x !x,e)}. So Yl-—l = zi;‘x’l '

F,
or Yl-l = ¥i2.j .
m
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Theorem 6:

' 1
suppose G = {a; ... ,anlh') ¢ ¥satisfies C' (/)
and for all Wesuperpos(L%y L&) and all superpos-
deduction=- chainf {xm.wm,.-...xo.'ro,m, my O, we

have Irredﬂ&(\'m 'Xm(wzl} = e,
Then: Use(R) implies Irreda&w) = €.

Proof:

Let Use{7) be irreducible with respect to f—.r.
There is a word U'ﬁU{E(G_F}), s.t.
~1 1

b= P S Tyt ... T 1S £6G, S €7
u '.I‘1 511’1‘1 Tk Sika' Tj words of G, 1:}
Obviously U' can be reduced to e by % .

Assumption:
There is-an algorithm Q.with Irred- (U') # e.
A s

Let W = lni;n{wi WA (U R), WW, (5), Woill, (0
Ir::eci(ﬁ1 &) = [eyand
[ 4 Ir.'!:ed(ﬁ2 ,‘SA)} .
W exists because R has FTP and because of the

assumption.

Then W = U WU, Uy, U, irreducible {(because of
the minimality of W), Wi = W, U,, ie{_l,z},
‘"x""'z’ critical pair belonging to W.

As eeIrred(Fi1 /2) there iz a superpos-deduction-
chain (xm'Ym""‘xo'yo'm describing the reduc-
tiony of 'ﬁl to e, with

xm= UfIrre"‘a&(W])‘Ug' Ym-= e

Then e = Irreda&(‘!;l-xmmz)) = Irred;,(e~1-xn{w2))

= I:redv-‘&(xn_l(wz)) = Irredﬁ&(wz) .

This contradiction proves the theorem. 4

Definition:

R satisfies K1 =) If Irred, (W ) # Irred. (W}
*F

for gome critical pair “"'1'”2’
then I"e‘iaef"‘i} = Irredaafwz)

Lemma 2 :

Suppose R satisfies K1, Wesuperpos ﬁ"i'ij) '
(WI.Hz) critical pair, w-—;wi (Li.Ri) and
Irredag(H,) = IrredmaT(wi) . ie{l,2}

1

B, A R. = R:B,
i i 173

Then:

Li=Li-




~ ~1 ~
= A-B. L. R, = B:R,
Lj A BJ LJ' 3 75

Irredqaml) = RiLj' Irredga(wz} = LR

The proof is by inspection.

pefinition:

The notation is as ip lemma 1: Assume R satisfies

Ki:
a) B, is called block in . LI, L) e
i i i3
[ _ 1 o "o
1) Ri = Zl' Ri.
© o
4i) There is 2 superpos—deduction-—chain
(XI,Y X ,Y M) st

a}xi=1‘ixi 1 "3

b} Irredo_&(xl) * Irredg (24 L 1)

c) Yl = I:t::l:ed.‘;;‘s’.{Li xi Z }- R o j

[+]

g} L, 4is called a block in (i. L L, ) s
jo :'o jo jl
jy1, =L.°2

jo 3o 2

ii) There is a superpos-deduction-chain

.X .Y WY s.t.

_ 1
a) % = Ry Tyngky Ly
b) Irred%(x ) = zrred,, (% (0,0

(xl'Yl

cy ¥ = R,» L, Irredg, (2,%°
! 10 jo & Zjo jl

c) & satisfies K2 e=h
Let (xl.Yi i .Y ,W) be superpos-deduction=

jo, '

chains of Hcsuperpoﬂl.i L
0
i i i
Irredg (X} * Irredm&(xlth)), 1cl1,2},

T, 1 and
[

Then there is a block -ﬁi in (ii ."f.
o i o]

a block I, in (T, /T, /I ).
jo { j’o‘ 30- )]

Y

D} Let ’R1 be a block in (L; +iy 'Lj Ve
o . 1 o ‘o
£  be a block in (L, L, /L ).
- = jo 10 jc> 31
Ri' Lj is called invincible if

[=]

1) ‘i 'E is irreducible
o O .

1i) ?i _%.p = bI, is not subword of some

o -] L
LeLRg
. = =" =
§43iy L, = b'L. = Ri- b iz not subword of some
3o 3o ]
LeL 3y

g} Rsatisfies K3 &=
. §) R satisfies Kl and K2

15) 1f ®, is block in (L i .. L, is
*o 1 o =] (=]

plock in ('f.i ,Z. .hf-. ¥,
- = [+] 3s 4
then R L. is invincible.
i %

Lemma 3:

. . 1
Assume R satisfies 3 and ¥ satisfies ! {/4) R
Wesuperpos(zio,fjo) . (Xn.':'n. ces .xo.Yo,m superpos~
deduction-chain, w—»xocii Ry
o o

~1 ~1 ~l ~1
X =L, 2 veeat B, Y2 “raet & «L. s
n ik ik-i 5‘0 ° jo 3 -1 7

and Irredq (x Y % Ixredur(xk(wz)) for alkl
N Hr

ket oo, mj. Let (M N )cb‘:{ﬁ ~~1

Then:

- =

v o= R, R, -...'E
k “k-1

bt
ol

s =

i3 Iget Im
R is block in ('f.i KA T

1 1+1

T“xi is plock in (I, M M)
1-t 1 -

i
L is block in (M S

T is block in (M, WM, JE. )
js-—i 33-2 Jgu1 s

and %R and T. -1 are invincible.

1 il--!t Jg-t js

The proof is by jnduction on L and s.

Theorem 7:
suppose & satisfies K3 and C' (1/4) .

H(superpOS(Lioijo)r (xn-an---fxoryolw) superpos
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~deduction-chain of length n.

Then: Irreda&(x‘:l'xntw,z)) = e .

Proof: Use lemma 3 and the irreducibility of

Xn(Wz) .

Theorem 8:

If ¥ satisfies C' (1/5) or ¢' {1/4) and T(4} then
R satisfies K3,

The preof is by inspection.

Corollary:

Dehn's algorithm solves the wordproblem for
G = <a,.uiia IT) 1 ¥ satisfies ¢ () or ¢ (¥
and T(4).

Proof: Theorem 8 and theorem 6.

One can show, that the assumption C'(ag)
in the corolliary is sharp, take for instance
6= @,b,clabrgra -b g -i)

b -1, -1

{tcba,abc}, (a~lcb,bea”ly, (b-Ia- c,ca b Y.

o ta 2y, wrleta,ac i,
(c-lab.bac_l), (abca-!,cb), {bca lb 1,a c},

T T I -1 -1 -
tea”lp e pta ™Yy, pacTlp e ta))

= ababal'x:br:a-icaulhﬂ1ahibﬂ‘cﬁlbnlc-Ib”lc:—1
is irreducible

W = abababca cbca 1b 1a b 1 _1 -1

Wy

o T T T N S A

4

wi = ababcbebea

¥
=]
W reduces to e and the irreducible element w2.

The assumption in theorer 6 {5 not finitary,
bur the assumption in theorem 7 is finitary. As
one can see from the proofs, all theorems remain
true, if one chooses other weight~functions W s.t.

W{e} = 1. The corresponding corcllary gives
Greendlingers theorem in [GRE 60} .
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Theorem 6 and theorem 7 are not 3just helpful for
small cancellation groups, but for other groups,
too. For instance, in slightly modifying the
assumptions of theorem 7, G = {a,b| a3b, abak )
can be shown to have a reduction-system &G'
achieved by the Knuth-Bendix-extension-algorithm,
which solves the wordproblem for G. This is also

an example of a proper extension of Dehn's algo-

rithm,
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Observation and Inference Applied
in a Formal Representation System

Robert Elliot Filman
Artificial Intelligence Laboratory
Stanford University
Stanford, Calilornis

1, Introduction

- An intelligent computer program must have both
a representation of its knowledge, and a mechanism
for manipulating that knowledge in » reascning
process, This work is an attempt to formalize the
expression and solution of a difficult problem within &
machine manipulable form,

Our consideration centers on the following
retrograde chess analysis puzzle {igure D). Iis solution
{from basic chess principles) is certainly beyond the
ability of any current computer program. Formally
and completely expressing the solution of this chess
puzzle is & difiicult enough task; this paper reports on
that expression.
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A piece has fallen off of the board from the square
marked X. Whai piece was itt This position was
ackieved in e legal ¢hess game, though theve & no
presumption that either player was playing (o win.

figure 1

This problem was chosen because ils solution
"requires” both deductive and observational inferences,
in a context isolated from other issues of correctness
and sufficiency.

The notion of deductive inference, obtaining new
proof steps by the application of synlaclic Inference
rules, ought to be familiar to the reader, We
recognize, however, thal human reasoning proceeds
not only by deduction, bui also by the immediate
recognition of resulis, a process we identify with
observation. We have extended our represeniaiional
system to include observational inference by
performance of computation in 8 semantic model.

Within the context of expressing the solution to
retrograde chess problems, we achieve a synthesis of
the two approaches. In particular, we bave
axiomatized the rules of chess within first order logic
(the declarative representation), but include within
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this system a method for computing {when an
effective procedure is known) the values of predicates
and functions {the computational representation).
This form of procedural representation allows nol only
efficient computation of known predicates and
functions, but slso provides a method for talking
abou!, in the formal language, these predicates and
‘tunctions. We call this set of semantic predicates and
functions the Chess Bye,

We shall also highlight the representational
decisions made in this axiometizalion, discussing both
the necessity for these pariicular choices, and their
implications for designers of other representalional
.systems.

Using a proof checker for first order logic, FOL
[Weyhrauch 77), we have delailed 2 proof for the
solution of the chess puzzle of figure [, including
proofs for almost all of the necessary associaled
lemmas [Filman 79). In the process, we have shown
the close correspondence between the formal solution
to the problem, and an informal, descriptive analysis.

Inference

Human problem solving proceeds in many
different fashions. Humans are capable of deduction,
applying syntactic rules to previous inferences. This
has been the reasoning mode most [requently
employed in Al programs. However, generally
intelligent systems will need to reason by other
schemes, such as induction (reasoning from particular
cases to a general conclusion), analogy (modifying
reasoning from a solution of another problem to fit
the current situation), and what we call cbservation
{quickly noticing an apparent conclusion, performed in
our system by computation in a semantic model). If
we are to create such programs, we must find a
_pragmatic representational mechanism, one thal can
support these other kinds of reasoning. Effectively,
we are looking for what McCarthy calls
epistemologically adequale representation formalisms
[McQarthy 77).

The work described in this paper is concerned
primarily with the qualities required of formalisms
capable of simultaneously representing complex
deductive and observational reasoning. Deduction is
obtaining conclusions by application of syntactic
rules. The term observafion is usually applied to
human inference in several ways; they are unified by
the notion of drawing a quick and immediate
conclusion by examination. Examples of human
observation arc scen in the repairman noticing the
failure of some mechanism, the mathematician
recognizing the value of some simple function, or the
game player recognizing a familiar paticrn of pieces,

Our computer systems will need to be sble to
unify such observational action with their deductive
results, We seek to sccomplish this while preserving
the deductive properties of the observational
predicates and functions; that is, we wish lo speak
about them in our forma! language and manipulate
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logic. We would also like to do
gll this in a manner that retains the mathematical
validity accruing from using & formal Jogical system.

This examination considers the adequacy of the
following scheme: that knowledge which is to
manipulated in deductive form is represcnted in 8
extended first order logic formalism. Associated with
this logical system is & eomputational LISP model of
these axioms. We permit the results of the evaluation
of constant functions on consiani objects in this
model to be legal inferences in the deductive, logical
system. This shall serve as our notion of observaiion.
This is not to imply that functional evaluation
captures all of observation; we are perfectly willing to
hook whalever hardware device onio this system {for
example, a television camers of ADC) as is necessary.
Nevertheless, we feel ithat this notion of functional
evaluation expresses the necessary clemenis that
computers will need for their observational ability,
and that whatever other observational mechanism are
Jater invented could essily be incorporated into such a
system.

them in our deductive

3. Eplstemology and Heuristics

This work is subsumed under the idea that the
general artificial intelligence problem is beiter
attacked by separating the issues of the represeniation
of knowledge {a notion also know as episiemology or
compelence) and those of selecting which knowledge is
to be used in solving some particular problem {an
issue  of  scarch,  heuristics or performance)
[McCarthy 77, Chomsky 85, Pratt 77},

This division has several beneficial side effects.
An appropriate epistemology can be {ask independent,
Similarly, one docs not wish to have to design a new

knowledge representation for every new problem. _

Separating the knowledge out from the search
process permits the employment of mulliple heuristic
stratcgies, so thal many different algorithms can be
applied in trying to reach a particular goel. A single
representational formalism permils the selection of the
appropriate strategy at the problem solulion time,
rather than tailoring a new sirategy to each new
representation (and each represeniation to a particular

strategy)
There is often scientific benefit {o dividing a

problem into pieces, and then solving these pieces
separately. The AL problem naturally divides into
representational and heurlstic parts.

And finally, 2 good question to ask the designet
of any Al program i, "What did you tell it, and
what did it figure out by itselfT” The use of an explicit
and separate epistemology can answer that question
and remove (or instil) the appropriate doubts in the
reader's mind.

4, Epistemological Adequacy

A primary question of 8 candidate representation
is, is i adequale? Thal is, in this formalism, and for
this domain, will we be able to both express the rapoe

61

ot problem situations, and meke Lhe appropriale
inferences! Is the resulling derjvation short enough to

be useful for our application!

Now, these are murky eriteria. I we play an

"epistemology game’, Wwhere we invent a
represeniation, and you find an unrepresentable
neounter example” (except for the most trivial

domains) we will run out of paper and patience long
before you run out of exceptions, Reality is a very
complex thing. Even natural language is.inadequaie
to compleiely model it. The best we can hope for is
to select some small piece of the world, and formalize

that part.
Similarly, the only criterion  we bave for
"appropriate’ reasoning 15 comparison with the

processes of the other known reasoning engines,
people. A machine derivation that is exponentially
longer than a human's is probably unsatisfactory. A
machine derivation quite shorier than a human
solution is-a cause for suspicion.

Basic Formalisms

We need a besic foundation on which to build
our representation. For that, we have chosen an
eztended first order logic. It is the usual predicate
calculus, with the addition of sorls, equalily, functions
and the ability to do computation in a scmantic model.

One might well ask, "Why logie?" After all, logic
has a bad name in the artificial Intelligence
community,  principally the result of  the
unsuccessfully attempi st applying general purpose
theorem provers to sets of clauses back in the late
sixties. The battles of that time seem to have been
won by the proceduralisis, whose rules allowed them
to program whatever interactions they pleased. Bul,
in retrospect, perhaps the mora) of those times is that
successful A.L programs must not only have pure
knowledge of their domain, but know how lo ust it,
In fact, representing knowledge about using fmowledge
in a uniform epistemological fashion is an important

open research question for Al
However, .our atteniion 1s centered upon

epistemological issues. From this perspective, we like
formal logic for several reasons:

® The sentences of first order Jogic are natural
That is, they're easily understood.

¢ First order logic retains  the  ezpheil
quaniification lacking in some other representations.

e Historically, there has been much work in
logic, and many semi-decision procedures for first order
logic already exist. Any system employing Togic can
avail itsell of this work, The various forms of

resolution are examples of such procedures.

o Logic is a general representation. It is
obvicusly not conirived for one particular domain.
We are discovering the expression of many notions
such as concept, knowledge snd observation that can be
expressed within this logic {McCarthy 79, Moore 18,
Filman 79).

o Declarative representations in general, and
firat order logic in particular, are easily and uniformly
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extensible. This beneficial extensibility is found in two
different respecis. When we wish to add additional
information to the system, we can merely cresie an
axiom having that knowledge; if new notions atise, wWe
can define new predicates and functions.

These, however, are the minor reasons. There
are two important justifications for the use of first
order logic for A.L formalisms.

e First, we like first order logic for providing us
with a good semantic model The {Tarski® semantics
of formal logic imply a clear concept of meaning.

¢ Secondly, - almost all  other  current
representations, be they microplanner, semantic nets,
KRi., or whatnol, are variations on the rules of
formal logic; essentially, the olhers are logic, anyway,
That & {rame might provide some heuristic
advantages, or a semantic net contain some useful
implicit axioms, we don't deny; however, they are all
declarative systems, and equivaleni in terms of
epistemology. Reliance on pure logic has two positive
attributes: we are isolating the epistemological issues
from the implementation, and we are effectively
speaking the lingua franca of representation languages.
Any particular network or schematic lormalism would
have required considerable explanation on our part.
Now one may wish to argue thal one's "frame” or
"semantic nel” provides heuristic {organizational)
advantages over a pure "list of WFF's". Thal’s fine,
but it is not the issue we are concerned with in this
work. ‘ ‘

There's a caveal to this claim, the presence of
the notions such as THNOQOT in microplanner.
THNOT X is true if the machine is unable to deduce
X: as such, its & commeni about the siate of {the
heuristic system, rather than the representational
formalism. Now, certainly this is & useful heuristic
tool. However, systems which are limiled to
identifying THNOT with NOT will inevitably have
trouble expressing certain relations and ideas.

8. Proof Generation and Proof Checking

A fully Intelligent compuier program will need
not only an epistemologically adequate world view,
but also an appropriate sct of heuristic search
procedures to manipulate this knowledge. This
reasoning program is somewhat beyond our current
abilities. In any case, we don'y need the full ability of
this reasoning program t{o judge candidaie
cpistemological formalisis, Rather, we need to have
our deductions certified, not automatically generated.
Clearly, the ability to accept a valid deduction is a
prerequisite to the actual generation ™ of thal
deduction. And also clearly, an epistemologically
adequate formalism can be tested by the use of a
proof checker. This is essentially the Missours
program of McCarlhy-Hayes {McCarthy 89), and is in

- the tradition of the Aduvice Taker [McCarthy 58},

We are fortunate to have here at the Stanford
Al Lab the program FOL {[Weyhrauch 77,
Filman 76), an extended najural deduction proof
checker for first order logic. FOL will acl as our
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Missouri program, checking the validity of our

candidate inferences.
We mentioned that FOL was a proof checker for

an erfended sorled first order logic. There are two
particular exicnsions to FOL of interest to us. FOL
has been extended to incorporate & laulology decider
for propositional logic with equality. And, more
important to us, with our interest in observational
interaction, FOL has the ability to create a semanlic
model of one's world, and to evaluate the values of
functions and predicates in thal model, returning the
result to the deduction level. Thus, if one has {he
function ¢ in one's logical langusge, snd the LISP
function PLUS in one’s model, and had associaied, ot
ATTACHcd (using the Semaniic Attachmeni
mechanism) these two together, we would be able to
make & legal inference such as:

5 SIMPLIFY 3 « 2
to which FOL would respond:
1)3+2=5

The simplify mechanism is able to evaluatc the
values of predicates and functions on constant objects,
and to check quantified statements for all members of
finite sets. This kind of simplification is fairly
satisfactory for simulaling our notion of observation

in chess.

7. Chess Puzzles

At the beginning of this paper, we inentioned a
certain chess puzzle (igure . While space limitations
preclude describing the solution of thal puzzle, the
reader should notice that, not only is the solution
very complex, but that it also requires steps of two
different forms., Any solution will exhibit both
deduction, inference of the form "Both sides can'l be
in check at the same time, black is in check, therefore
white is not in check”, and observation, inference of
the form "I see black is in check”, or "There was no
black piece that could have moved [rom there,” We
perceive our task as finding the appropriate
incorporation of this observaticnal reasoning into the
deductive framework, Incidently, the fallen piece in
the puzzle of figure I was the white queen’s bishop.
The reader is referred to [Filman 79) for the detailed

solution.

8. Objects of the Chess World

1t the reader solves the puzzle for himself, he will
surely perceive how complicated chess reasoning can
be. Besides complexity, chess (as a problem domain}
has another appealing atiribute: we can unequivocally
solve this problem; no reader ought to raise any
correctness objections. Chess is a completely specified
domain. This serves to help us to isolate the

interesting features.
We proceed to outline our formalization of the




chess world. Space constraints limit how much we
can say about our axiomatization; we touch here only
the more important notions.

Axioms usually talk about objects, and we begin
by presenling the different kinds of objects present in
the chess world, First of all, we have the notion of
Boards. Most chess problems are presented in terms of
a chess board. That is, the eight squares by eight
squares, with the white king over here, and 2 black
pawn down there, There are sixty four Squares on

any chessboard.
Of course, if we are to speak of white queens and

black knights, we need a name for this type of object,

too. These are the Valucs.
These values are, however, io be distinguished

from the chesspieces themselves; after all, the white
queen's knight is not the same as the white king's
knight; a promoted pawn has not always been a
queen. Our reasoning will need o make these
distinctions. Hence, we name each of the 32 chessmen
with a unique, individual name, obtaining the set of
Picces.

All of the above, while somewhat sketchy, ought
to appear faitly natural. Now, we preseni a kicker.
We nced to speak of the various things that must
have happened to reach this point in the game, the
capture that must have occurred, and so forth. Even
ihe chess rules, in delimiting castling moves and draw
conditions, refer to the entire game history. Hence,
we declare an explicit set of historical states, the
Postlions, which can be though of a5 the history (set of
moves) employed in reaching this particular board.
Notice that for any given board, there will be many
different games that could have been played fo
achieve it; hence, we will have io associale &
"variable’ position with any board, and deduce
properties of all the positions {games that could bave

reached it} associated with that board.

There s also the natural notion of the Moves, the
explicit, discrete transitions between the positional
states, and the Colors, black and white, for the two
chess armies.

9, Predicates and Functions

Of coutse, monadic predicates do not make an
exciting universe, We will mention only a few of the
more interesting predicates and functions.

The fundamental predicate in the system is that
of SUCCESSOR(pl,p? defined on two positions. If
one position, p, is the successor of another, pd, then
p2can be reached by & legal move from pl.

It SUCGESSO}i {s to be the succession function

of our system, then like arithmetic, we want & notion
of "less than", which is called PREDEGAME.
PREDEGAME(pl, p8) is true when pl occurred-in the
game that reached
,"detcrmincd“ by "examining” p2 i pl happened in its
play. Naturally, for every legal game, the initisl
position, PO, has the predegame relation to that game,
In our axiomatization, this becomes:
Vp. PREDEGAME(FU, p}.
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p2. IL ean (of course) be

Any given position will have associaled with it
the chessboard resulting from playing that game, We
call this the Thoard of that posilion {for total-board).
As the various picces have their own individual
identitics, we can refer to the piece occupying a given
square in & particular position. Thus, if pz is a
position thal was played to reach the problem board,
then Pos(pz, BKR1) = WK {on BKRI {black king's
rook one) in pz is the WK (while king)

Recall that we made a distinction between the
values on & given chessboard, and the piece names
themsclves. This is partially because chessboards
don't mention which piece fs on 2 given square, bui,
more imporiantly, because some pieces {pawns) change
their value in the course of 8 game. Thus, we ste two
other natural functions; we state thal Valueon(b, s¢} =
vil the value on the board bon the square sqis v, and
Valfp, z) = vil the value in position p of the piece Zis
v.  Note that, for all non-pawn pieces,
¥p z-PAWNS z° Valfp, ¢} = Val(P0, z). That is, in
any position, the value of any non-pawn piece is the
same as its value was in the initial position. This is a
theorem, not an axiom, snd was proven within the
axiomatization.

10. Board Relations

While we're talking about values, perhaps this is
an appropriate time to mention UD, the undefined
value, Essentially, we necd a way of specilying the
values of squares of boards when we don’t know whal
is on that square. For example, on our problem board
{figure D), the X's square has an undefined value,

This creates a natural ordering on boards by
"greater”  definition. We call this ordering
SUBBOARD. A board bl is a sub-board of a board b2
(SUBBOARD(b1, b8) ), if they are equal everywhere b1

is defined.
We state that the BOARD(p, b) relation is frue

between a position and a board, when the board bisa
SUBOARD of the tolal board of ihe position p.
Hence, in ressoning sbout the given chess puzzle, we
will first define the board GIVEN, the problem board,
and then presume to be talking about the archetypical
position, pa, which has the BOARD relation with
GIVEN.

11, Chess Movement

Of course, 8l of the entilies we have defined 50
far have becn syntactic ones. One of our major
demonstrations is the usc of & semaniic model
combined with these syntactic entities. We will wish
to compute actual moves; for that reason, we will
need to define moves on concrele chessbeards, rather
than ihe conceptual chess positions. Thus, we have
the predicate MOVET Ofb, v, sql, 89%), which slates
that a piece of value v, could move on board &, from

square s¢J to square &¢%.
There is an axiom that bresks MGVETO down

into the various different value movements, each with
its own predicate. There is also an attachment in the




chess eye that can take a constant board, value and
squares, and evaluate the iruth of this predicaie on
those arguments, and attachments to each of the sub-
movemeni predicates. Both are useful, for the
computation is simple and quick, and the axiom ecan
be applicd Lo non-constant argumeats.

Even though the actual computation of moves is
often done on explicit boards, we implicitly have
associated with any move various. functions, For
example, we can speak of the square the move
originaled on, the From square of the move, or the
piece thal made any particular move the Mover,

Please recall that these are just a sample of the
notions of the chess world. This is hardly the
complete set of predicates and funciions. The reader
is referenced to [Filman 79) for a more complele
listing.

Axioms

Our discussion of the predicates and functions of
the chess world is necessarily very incomplete. So too
musi our examples of axioms from this system. The
reader can, of course, consult [Filman 79} for the
complete axiomatization.

The most important axioms in this system are
those that delimit the itransilion between successor
states; Lhatl is, those Lhal define the legal moves, For
example, consider the following represeniative axiom,
MCONSEQA (move consequences A):

axiom MCONSEQA: Vr q(SUCCESSOR(r, g
{(~WHITETURN r »« WHITETURN ql A

12.

Prevpos qsr A :
=POSITIONINCHECK(q, Color 2} A
(WHITEPIECE Mover Move q» WHITETURN ria

Pos(r, From Move g} = Mover Move g A
Pos(q, To Move gl = Mover Move g A
Pos(q, From Move q) = EMPTY A

{CAPTURE Move ? ]
Pos(r, To Move gl = Taken Move g} A
{CASTLING(r, q v EN_PASSANT(r, q) v
SIMPLELEGALMOVE(r, g¥))j;

It states some of the conditions on moves; what
piece must occupy which square, whether a move can
leave the moving side in check, which pieces can be
moved, and the beginnings of a taxonomy of
movement.

IL is aiso imporiant to talk both about what is
never irue afier a move transition, and what remains
true between moves. For example, if & plece 2 is
captured on the move that reach position r, then zis
not on any square sin r:

axiom MCONSEQF:
¥r sq x.(Taken Move r=x>-~Poslr, sql=x);;

The Cheas Model

In our system, observation is performed by
making the appropriaie atiachments lo the FOL
constants, and cslling the semantic simplification
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routine, For example, chess boards are represenied as

eight Jong lists of cight atomic values,
The axioms have associaled LISP [functions

which compute notions ranging from the simple "the
value on that square on this board on through "can @
piece of value v move, on b, from sl lo sgf " il the
way lo "is black in check on boord b " The LISP
functions themselves are not particularly noleworthy;
they arc usually the obvious transformation of the
axioms onto the data structures. Thus, a single
observational step in our proof produces the
observation that black is in check on the board
GIVEN (the problem board).

sxkxxsimplify BLACKINCHECK (GIVEN);
1 BLACKINCHECK (GIVEN)}

Deducing the corresponding fact would require a
very long proof. As a point of comparison, the
theorem ALLSTART: VYz. 3sq. Pos(P0, s¢)=z which
states that every chesspicce s on some square in the
inilial posilion requited 165 proof steps to infer
deductively, but only a single simplification using the
chess eye in the semantic model.

14. Chess Induction

One other prominent feature of the chess
axiomatization deserves mention, that of Chess
Induction. Chess induction is an axiom that states
that if a properly ? is true in a position p, and it
remains true over the successor relation, then it will
be true in all descendants of p {all games thai can be
reached by playing from p ). We usually use the
initial position, PG, for p, and prove properiies true of
all legal positions.

Chess induction, combined with the historical
state vector (our position) is a powerlul deductive
technique. For example, using chess induction, we
prove theorems such as: A picce not on s original
square has moved in this game for been the moving rook
of a castle):

V¥ r sq x. ((Pos(r, sqi=xA ~(Pos(P0, sq=x}}>
3 q{((PREDEGAME(q, 1)V g=pA
{(Mover Move g=xATo Move g=sqv
(CASTLE Move qaAlsomover Move gexA’
Alsote Move g=sqh)))

And that bishops stay on a single color square
(here ybi is a variable ranging over bishops):

¥r sql 52 ybi.{(Pos(P0, sqli=ybiAPos(r, sqll=ybil>
(WHITES QUARES(sql)s WHITESQUARES(sq2))

Nole that here we have a powerlul iechnique for
dealing with the frame problem, If we have conirol
over the types of interactions available in siate
transitions, induction schemas such as this one allow
us to prove constant properties of dislant siaies.




15. ‘The Proof

This has been just a small sprinkling of examples
trom the chess axiomatization. We hope i has been

useful in conveying their flavor and form.
From this axiomatization, we preceded lo

generate a proof of the solution to the chess puazle.,
This is esscntially the path that a general reasoning
program seeking to solve the chess puzzle might

follow. ,
The details of that proof are too gory to go into,

bul we can present some of the highlights and
statistics. The form of the proof matched, fairly
closcly, an English explanation of the detailed solution
to the same problem. The human proof required 68
"steps”; the FOL "proof”, 405, In the process of
deriving the FOL proof, 159 general chess lemmae and
theorems were proven. These required 1702 steps.
Additionally, six lemmas specific to this problem were
also demonstrated, requiring another 136 sleps.
About half of the proof steps in the main proof were
instantiations of axioms and theorems, and another
quarier were requesis for the confirmation of the chees
eye.
v 1t is clear to us that this proof of the solution to
the problem from basic chess principles is well beyond
the ability of any current theorem prover.

18. Conclusions

We believe that there are lessons to be learned
here in the design of epistemological structures for
artificial intelligence, and we will attempt to convey
some of these precepts. This is, of course, & brief
description; a more thorough examination may be
found in the last chapter of [Filman 79).

The ptoof paralleled closely the ressoning
inherent in the human solution of this problem, and,
in that respeet, FOL was acting as & good candidale
Missouri program. As with any advice taker, be it
machine or human, there were of course times when it
would nob accept "obvious™ conclusions. This is in
part a function of both the minor failings in the proof
checker, and faults of the axiomatization.

The axiomatization adequately modeled the
human proof, despite the disparily of size, with two
major exceptions, Our notion of observation, tied as
it was to computation on well defined objects, was
inadequate for handling incompleiely defined objects.
These "objects” may be thought of as “ebjecis with
variables in them™ or, pethaps, "partially defined
objects”. The board and sub-board dichotomy is an
cxample of such pariial objects. The creation of the
value UD (undefined) (and the concomiiant creation of
partial boards) served as a parlial remedy in this
particular case. However, the general problem of
reasoning aboul composiie objects, some of whose
primitives are unknown, was not uniformly
-approached, Introducing an "undefined” primitive
value "solved” this problem for those predicales using
values; this solution required modifying all chess eye
functions that employed values. It did not deal with
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stating in the model resirictions and properiies of
these undefined objects. A similar scheme could
perhaps have been employed for the other objecis of
the chess world (pieces, boards, positions). Of course,

~ such a modification requires modifying all axioms and

funciions that employ these primitives lo handle
them. [Even such an approach has certain
inadequacies. A more general solution might involved
a system that can talk aboutl its own possible worlds,
models, and proofs as objects in ancther, meta world.
Nevertheless, it seems clear that a general reasoning
system that wishes to employ such procedural
attachment nceds to deal with incomplele composite

objects.
The sccond disparity invelved mathematical

notions. One thing that was avolded in this
axiomatization was characterizing ihe elementary
notions of mathematics. Arithmetic was casily
avoided by reliance upon computation in the LISP
model. However, this failure to allow a general
concept of set or list within the FOL logical structure
turned human argumenis of the pigeon-hole principle
form inio case arguments in FOL, Thus, counting
arguments became case checking problems. While not
a completely satisfactory solution, avoiding set theory
proved to be a workable decision for a problem of this

size,
The particular semantic model selecied for

representing the chess world in LISP was adequate for
dealing with "ordinary” retrograde chess puzzles. One
can, however, stretch the domain demanded of any
system to its limits, Certain things, such as the
dimensions of the chess board, the notion of legal
game, and the board’s orieniation relative to black
and white were fixed in the internal representation, It
is of course possible to generate chess puzzles on these
themes. I this seems somewhat obscure, perhaps &
couple of examples will clarify the situation. Consider
this simple observation:

I3 white In cheek on this fragment?

figure £

The semantic model, as currently formulated,
would not recognize this "fragment” as a piece of &
"board”. However, this is a natural extension and
simple observation for the human problem solver.
The axiomatization can be criticized for adhering too
closely to the rules of chess, and ignoring ifs
primitives. Although this sounds like & drastic error,
correcting the axiomatization o refect this more
primitive Jevel would not be that drastic a revision,




Similarly, consider the following problem, from
[Gardner 59}
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T 65V
White to play and mate in four. This is & fegal
position.

fgure 8

This is not so much an issue of maling in four, so
much as recognizing that (as the black king and quecn
are on the wrong color squares) the pieces have
exchanged sides. While the current axiomatization
could be used lo prove that if white starled al the
botiom of this board, then this board could not have been
reached in a legal game, in some sense, the puzzle
needs to be solved before it can be put in the
acceptable form for the axioms. What we have here
is an issue of language, There are ceriainly many
questions one would like to ask in, for example,
English, for which natural language is inadequale,
Imagine, if you will, the circumlocutions involved in
giving a written spelling test.

I we were redo this axiomatization, we would
recognize the need for both a fiexible semantic model
{a board being a list of squarcs and values, or perhaps
even wuarcs and limitations on values).

e also perceive the necessity for dealing, in a
uniform manner, with objects that are
congregations of other, more primitive terms. Thus,
in our proof, & position is a list of moves. This notion
of historical position, retaining (and thus being able to
comment upon) all that had happened to reach it
proved a very succcssful mechanism. The notion of
sel of pieces caplured would have been the appropriate
way to axiomatize the set theoretic asrguments.
Similarly, other natural chess notions, such as palh,
block and stralegy can be seen as exiensions of this
idea. We have had some success expressing sirategics
as accomplishable predicales on positions.

Speaking of positions, they rank as a major
success of this formalism. The ability to talk about
what must be true of all objects of a certain kind, by
examining them, and to prove, inductively, their
properties, proved to be a very powerful notion.
While the discrete nature of chess time sequence
_eliminated some of the difficulties involved in
transferring this arrangement to the "real” world, we
do feel that this ides is touching on 2 powerful and
often useful notion, More generally, practice with this

more
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axjomatization and others leads us lo the belief Lhat
there are essentially two different kinds of situational
variables, those expressing the slatics of a parlicular
reality {(Lthe chess example being boards), what is
where, and others expressing historical developmenl,
such as our positions. The former are mosi uscful for
forward analysis, answering questions of the form,
Where can we go from heref; the lalter, for dealing
with How did we get here?. Generally, the siatic
elements forms the slices of the historical situstions.
As we have stated, inductive schema on hislorical
state veclors seems to be 8 promising approach to the
frame problem.

We fecl that this proo! illuminaics the essential
dichotomy of reasoning paradigms employed by A.L
systems; the rule base syntactic forms, and the "block
box" semantic computations.

To summarize, evaluation in the semantic model
seems an apptropriale method for incorporating a form
of observational behavior inio a formal inference
scheme. Care must be taken, however, to select a
system flexible enough to handle future eventualities,
and to employ mechanisms which will support
complicated  reasoning. Incorporation of the
procedural functions as a semantic model will retain
ability to talk freely about these functions on the
logical language level, and to manipulate them with
all of the previously obtained mathematical resulis.
More powerful systems will be obtained when these
semantics models, together with the descriptive
language can be regarded as themsclves objects for
logical manipulation.
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Abstract

We restrici our attention to decidabie quantifier-free
theories, such as the quantifier-free theory of integers under
addition, the quantifier-free theory of arrays under storing and
selecting, or the quantifier~free theory of list structure under
cons, car and cdr. We describe a simple nondeterministic
procedure which combines decision procedures for theories such
as these into a decision procedure for their combination. We
analyze the running time of this nondeterministic  decision
procedure and use it to show, for example, that the satlsfiability
problem for the quantifier-free theory of integers, arrays, list
structure and uninterpreted function symbols under +, 5, store,
select, cons, car and cdr is NP-compiete. We discuss the
complexity of the satisfiability problem for formulas already In
disjunctive normal form (why some combinations of theories
admit deterministic polynomial time deciston procedures white for
others the problem Is NP-hard) and the essential role that case
analysis plays in deciding combinations of theories,

1. Introduction

In many applications of theorem proving, particalarty those
involving program verification, program manipulation and
program optimization, we would like to be able to very quickly
decide formulas or simplify expressions Involving the common
data structures of programming Iang{ngesz numbers, arrays,
records, list structure, sets, multisets.

The first-order theories of these data ructures are either
undecidable or of very high complexity. For this reason, most
“practical®  theorem provers restrict  their  attention 1o
quantifier-free formulas over these data structures. Empirically
this restriction seems reasonable: It admits a large and usefui class
of formuias, yet theorem provers which handle this clnss generally
do so reasonably efficiently.

This research was supported by the National Research
_ Foundation wnder contract MCS 78-02835.
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The purpose of this paper is 10 expl;:re the tomplexity of
reasoning in quantifier-free theories. We are particularly
interested in combinations of quantifier-free theories, such as the
theory which "combines” the quantifier-free theories of Integers
under addition, arrays under storing and selecting, and hst
structure under car, cdr, cons. The reason is that the formulas
which arise In practice tend to be "mixed” formulas contaimng
symbols from various theorles {formutas such s All + 13 < Al1])
rather than from just one of the base theories. Thus, we are
interested in, for instance, the quantifier-free theory of integers,
arrays, list structure and uninterpreted function symbols under #,
<, store, select, cons, car and ¢dr. {A decision procedure for

this theory is implemented a5 parl of the simplifier in the
Stanford Pascal Verifier.)

Implementers of theorem provers for a theory such as this
one have generally shied away from implementing an actual
decision procedure, and have fnutead relied on ad hoc techniques
designed to catch "most” cases. There are at least two reasens for
this. One is that, until recently, there has been little research done
on what x decision procedure looks like for "mixed” theories such
as these {or even if one can existh The main reaion, however, i
the common bellef that any decision procedure for such a theory
must be slow and impractical, that the complexity of such an
apparently rich theory must be very high. However, as we shalt
show, the satisfiability problem for the above theory Is In fact
only NP-compiete.

In section 2, we describe a nondeterministic procedure for
deciding combinations  of quantifler-free  theories which
generalizes the deterministic procedures given in {Nelson and
Oppen 1878), [Shostak 1677) and Suzuki and Jefferson (19771
We analyze the running time of this procedure. In seclion 5, we
review some existing results on decidability and complexity of
various theories. In section 4, we use the results of the previous
sectlons to analyze the complexity of several combinations of
theorfes. In section 5, we consider quantifier-free DNF
combinations of theories, that is, combinations of theories all of
whose formulas are in disjunctive normal form. Some of these
theories have polynomial time solutions while others are
NP-hard, In section 5, we distuss the cost of the case~analysis
{nherent in any (deterministic) implementation of the procedure
described in section 2.




-

2. Nondetarministic Combinations of Theories

Assume we have several quantifier-free theories with no
non-fogical symbols In common and that for each we have a
satisfiability program which determines the satisfiability of a
con junction of literals in the theory. Our goal 1t to construct a
(nondeterministic) satisfiability program for the quantifier-free
theory whose set of non-logical symbols 15 the union of the sets of
non-fogical symbols of the individual theories and whose sel of
axioms is the umion of the sets of axioms of the individual
theories. We will assume that we have just two theories; the
generalization to more than (wo i3 straightforward. The following
definitions and three lemmas are taken from [Nelson and Oppen
1918b].

¥ S is a theory, then 2 term is an S-rerm if each
non-logical symbol occurring in the term is a non-togical symbol
of $. We define S-literal and S-formula similarly. If S is 2
theory, a satisfisbility progrem for S is a program which
determines whether a conjunction Ly A... A L, of S-literals is
satisfiable in S. We will use the name of a theory to denote alic
its satisfiability program.and the conjunction of Its axioms.

A parameter of a formula is any non-logical atomic symbol
which oceurs free in the formula, Thus the parameters of 2 » b v
¥x Px, f(x)) = care a, b, P, f,and ¢

A simple formula i3 one whoie oniy parameters are
individual variables. For instance, x w y v 2 = y and ¥x x = y are
simple, but x < y and f{x} = y are not. Thus an unquantified
simple formula I a propositional combination of equallties
between individual variables.

Lemma 1: If F is any formula, then there exists an
unquantified simple formula Res(F), the residue of F, which is the
strongest simplie formula that F entails; that is, it H is any simple
formula entalled by F, then Res(F) entails H. Res(F) can be
written so that Its only variables are free variables of F.

Here are some examples of residues.

Formula Residue
x = fla) A y = T(b} arboxwy
X = storelv, i, e){]) iejoxme

% = store(v, Lelayevljl Ifinjthenx seolsex =y
XeX false

Lemma 2: If A and B are formulas whose only common
parameters are individual variables, then Res{A A B) w Res(A) A

Res(B).
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A formula F is non-convex if there exist variables x .y, ..
NER SN 22, such that F 2%, =y, v...vxn-ynbmfor no
§ between | and n does F > x. = 1. Otherwise, F is convex That
is, a formula is non-convex if it entails a dis panction of equalities
between variables without entailing any of Lhe equaiiies alone,
otherwise it is convex. For instance, the formula | sx £2ay =1
A 1 = 2 is non-convex over the integers because it entails the
disjunction X = y v X = 2 withoul entailing either equality alone.

Lemma 3: Let F,, Fyo ..., F be simple, convex formutas
and V be the set of all varsables appeaning in any F,. Suppose
that for all x, y in ¥V and for il |, j from | to n, either both F,
and F, entail x = y, or neither do. Then Fy a Fpn ... AF s
satisfiable if and only if each F. is satishiable.

2.1 The No'ndeterministic Satistiability Procedure

We assume we have two theories § and 7 which have no
common non-logical symbols, that we have satishablity programs
for S and I, and that S and 7 are the axioms for S and J.
We are given an unquantified formula F whose non-logical
symbols are among those of S and T, and wish to determine
whether F is satisfiable In the theory S v T, that is, whether S

A T A F is satisfiable.

Consider first the disjunctive normal farm of F. Each
disjunct is a con junction of fiterals; F is satisfiable i and only if
one of these disjuncts is satisfiable. Our first step is therefore to
guess which atomic formulas in F make up a satisfiable disjunct.
Call the con junction of these lterals F"

F* may contain "mixed” literals, literals which are nelther
S-literals nor F-literals, For instance, suppose that S
quantifier-free  Presburger arithmeue, that J is  the
quantifier-free theory of list struciure and that F' is the single
literal y = car(x) + 3 This fiteral is neither a S-literal nor a
S-literai. We wish to divide F' into two formulas, one which can
be handled by the satisfiability program for S and ane which
can be handled by the satisfiabitity program for . That is, we
want to construct two formulas Fg and Fy so that Fg is 2
con junction of S-literats, FT is a conjunction of J-iterals, and
FenFpis satisfiabte If and only if F' is. In our example, y =
car(x) + 3 s equivalent to 2 = car(x) Ay « 1 + 3 where 245 2
new {sxistential} variabie; z = car(x) is a F-titeral and ye1+3
is a -literal. We can therefore let Fobey =1+ 3and Fybez~
car(x). In general, we construct FS and Fy from arbitrary F*in
simitar fashion: for each luteral appearing in F', if the literal is an
S-fiteral, we add ft to Fgi if it is a J-literal. we add ik 1o Fy;
otherwise we introduce new variables to replace terms of the
wrong “type” and add equalities defining these variables.




We wish to determine if S A Fg A T A Fy s satishable.
First, if Xy, ., x, are all the variables in FS and Fq, we guess the
equalities and disequalities that hold among the x,, and let E be a
con junction of equalities and disequalities of variables describing
our guess. For instance, if there are four variables X, X,, Xy and
X Emightbe x, = X, A%y =X, AX, ¥ Xy

We add E to our conjunction and now wish lo determine
the satisfiability of § A F A J A Fy A E. 1t suffices to show that
Res(S A LPS VP FyaE)is satisfiable (that is, not fa/se). By
lemma 2, this residue is equivalent to Res(S A Fg A E) A Res(T A
F; A E). Since E already expresses precisely the equalilies and
disequalities that hold between the variables, Res(S A Fo A E}
and Res(J A Fr A E) are simple and convex, and entall the same
set of equalities among variables, Hence, by femma 3, to verify
that F' is satisfiable, it suffices to show that both Res(S A Fgn
E) and Res(J a Fy A E) are satisflable. This will be the case if
and only if Fg's 5 A Fo A E and Fi'e J A FyaEareboth
satisfiable. Since Fs' is a conjunction of S-literals and Fylisa
conjunction of J-literals, we can use the satisflability programs
of . and I to determine their satisfiability.

The essential (dea behind this nondeterministic procedure
thus it to guess alt the equalities that hold between the variables
and then-to use the individual satisfiability programs lo decide
whether the formula with these equalities is satisfiable.

2.2 Analysis of the Algorithm

What Is the running time of this nondeterministic
satisfiability procedure? Let n be the fength of the incoming
formula F. We can guess F' in nondeterministic polynomial time;
the size of F' Is linear in n. We can construct Fg and Fy in
polynomial time. We can guess the equalities that hold between
the variables of F' in nondeterministic polynomlal time; the size
of E is a polynomial In n. The sizes of F¢' and F,' are again
polynomial in n. The remaining time required is whatever time is
required by the satisfiability programs for S and T to verify
that F' and Fy' are satisfiable.

Consider now the satisfiability problem for § v J. It s
certainly NP-hard (because of the arbitrary boolean strircture
allowed in formulas). The problem of constructing the formulas
Fs' and F;' is in NP. If the problems of determining the
satisfiability of conjunctions of S-literals and of J-titerals are
also §n NP, then the satisfiability problem for S v T is in NP
and hence NP-complete. Otherwise, the complexity of ihe
satisfiability problem will be dominated by the complexity of the
problem for Sorfor J.

. The results given above for two theories generalize In a
straightforward fashion (o more than two theories.
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The following summarizes these results.

Theorem 1: Let 31. 32. - ‘9k be decidable,
quantifier-free theories with no common non-logical symbols.
Then T, uT,v.v T, s decidable; If the satisfiability problem
for each of the ‘7i iy in NP, then the satisfiabiitty problem for
F,v Ty u.u T, isin NP and hence NP-compiete.

3. Reviaw of Existing Complexily Resuits

Before using the results of the previous section to analyze
the complexity of various tombinations of theories, we first
summarize some existing resuls. in the following, the
quantifier-free DNF theory is the theory in which every formula
Is already in disjunctive normal form. This restriction is of
interest because the complexity of its satisfiability problem is just
the complexity of determining the satisfiability of a conjunction

of literals.
3.1 Theory of Integers under Addition ‘

The first order theory was shown decidabte by {Presburger
1928). [Fischer and Rabin 1972 prove that the theory has a
double-exponential lower bound on nendeterministic  time.
[{Oppen 1978) proves that the the theory has a triple-exponential
upper bound on deterministic time. (Reddy and Loveland 1978}
prove that the bounded quantifier subtheory has 1
double-exponential upper bound. The satisfiability problems for
the quantifier-free theory and the quantifier-free DNF theory are
NP-complete; this foliows from [Borosh and Treybig 1976).

3.2 Theory of Integers under Successor

This is the same as the above theory except that addition
of variables is not zllowed, only addition of a variable and 2
constant. (An example formula in this theory s x my 3 X + 1 £
v y + | £ x) This theory is an interesting subtheory of
Presburger arithmetic because {Prawt 1977) has shown that one
can determine the satisfiability of a formula of length 0 in the
quantifier-fres DNF theory in time O(ns).

3.3 Theory of Equslity with Function Symbole

A proof of the decidability of the quantifier-free theory
appears in [Ackermann 1953} {An example of a valid formula in
this theory is x » y > f(x,}} » f(yx). } [Nelson and Oppen 19782)
give an On®) decision procedure for the DNF quantifier-free
theory., It follows that the satisfaability problem for the
quantifier-free theory is NP-complete.




3.4 Theory of List Struclure under car, edr and cons

There are several possible axiomatizations for this theory:

car{cons{x, ¥)) = X

cdricons(x, y)t « ¥ (1
{iatpix) > cons{ear(x), cdrix)} = x

Hstp{consix, y)}

car{cons{X, Y)}» X

cdricons{X, Y=Y

X w nif > consicarlX), edr(X)} = X (2}
cons{X, Y} = nil

car{nil) = edrinil} = nll

car{cons{¥, Y} = X

cdricons(X, Y=Y

cons(car(X), cdr(X)) = X ®
cariX}» X

cor(X) e X

car{car{X)» X

[Nelson and Oppen 1978a) show that the satisfiability
problem for the quantifier-free DNF theory axiomatized by (1)
has an O(n2) solution, but that the problem for (2) is
NP-complete. [Oppen 1978a] gives a linear algorithm for (S},
Therefore, for any of these axiom schemata, the quantifier-free
theory is NP-complete. The first order theory was shown
decidable but not eiementary recursive by [Oppen 1878a).

These results generalize easily to data structures with one
constructor ¢ and k selector functions 3y, ... . Such data
structuras are called recursively defined date structures.

3.5 Theory of Arrays under Selecting end Storing
The axioms for this theory are as follows:

select{store{A, L E}L 1} = E
Iw ) o selecKstore{A, 1, E), J) = Al})
store(A, 1, sefeckA, 1)) = A
store{store{A, }, E}, 1, F} » store(A, 1, F)
I« ) = store(store{A, 1, E), ), F)

« slore(store(A, ), F}, 1, E)

selectA, 1) is the Ith component of the one-dimensional
urray A. All] abbreviates sefectA, 1. store{A, 1, E} is the array
whose Ith component is E and whose Jth component, for Jm 118
A[JL A two-dimensional array Is considered a vector of vectors,
50 All,]} abbreviates A[1X]1 The last three axioms are only
needed if equalities between array terms are allowed ({Kaplan

19681
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(Downey and Sethi 1976) show that the satifiability
problem for the DNF quantifier-free theory is NP-complete.

3.6 Theory of Integers with Function Symbols

[Shostak 1978) shows that the quantifier-free theory of
integers with uninterpreted functions under + and s is deaidable.
(T his also foliows immediately from Theorem ) '

3.7 Theory of Integers and Arreys

[Suzuki and Jefferson 1977) show that the quantifier-free
theory of arrays and integers under +, 5, store and select s
decidable. (This also Tollows directly from Theorem L} They abso
extend their results to the guantifier-free theory 2if of whose
formulas are of the form P > Q A PERM(A,B) where P and Q
are conjunctions of literals over the theory of arrays and integers
under +, €, store and select and A and B are array terms.
PERM({A,B) is interpreted to mean that array A is a permutation
of array B,

4, Complexity of Various Combinations of Theories

The results quoted in the last section lead immediately to
the following corollaries of Theorem i,

Corallery 1: The satisfiability probiem for the
quantifier-free theory of fntegers, arrays, list structure and
uninterpreted function symbols under +, 5, store, sefecl, cons,

car and ¢dr is NP-complete.

Corolisary 2 The satisfiability problem for the
quantifier-fres theory of Integers and arrays under +, 5, store
and select is NP-complete.

This is the theory considered by [Suzuki and Jefferson
1977) It is easy to verify as well that the addition of the PERM
predicate does not change the NP-completeness.

Corollary 3: The satisfiability problem for the
quantifier-free theory of integers and uninterpreted function
symbols under + and s is NP—complete.

“This Is the theory considered by [Shostak 1976}

B, Convexity

Since the theories we tonsidered in the previous seclion
were already NP-hard (because of the arbitrary boolean structure
allowed in formulas), our analysis of the running time of our
nondeterministic procedure could be fairly gross: it sufficed to
show that each step required at most nondeterministic pelynomial










rime. But what if we pestrict our attention to formutas already in
disjunctive pormat form, that is, to quantlfier—free DNF
combinations of theories?

The satisfiability problem for some quantifier-free DNF
theorles {such & the theory of integers under addition of of
arrays under storing and selecting) i already NP-hard, and any
theory including such a theory must therefore be at kast 8 hard.

However, f we further restrict our attention 1o
quantifier-free DNF theories with deterministic polynomial time
satistiability problems, we might hope that their quantifier-free
DNF combinations also admit deterministic polynomial time
solutions. For instance, we might consider combinations of the
quantil‘icr-free DNF theories of Integers under successor, equality
with uninterpreted function symbo!s. and fist structure under car,
cons and cdr (with axioms (1) or {3 since each has 2
deterministic polynomial satisfiability probiem.

The results are mixed. For instance, (Nelson and Oppen
19782} show that the satisfiability problem for the quamifier-free
DNF theory of list structure with uninterpreted function symbols
has an O(n?) solution. On the cther hand, {Praut }977] shows
that the theory of integers {under successar} with uninterpreted
function symbols is NP-hard.

These resulls are clotely refated Lo the property of
convexity. Recall that a formula i non-convex if It entails a
dis junction of equalities between variables without entailing any
of the equalities alone: otherwise it Is convex. Define a theory LY
to be convex if every con junction of S-literals is conveX;
otherwise If is noR-convex. )

Some of the theories considered in this paper are convex,
others fron-convex. The theories of Integers under addition and
of integers under sugcessor are non-convex. for instance, the
formula 1 SX £2AY" 1 A 7+ 2 entails the disjunction X = ¥ V
x = 1 without entailing either equality atone. The theories of
equality with uninterpreted function symbols and of list structure
under car, cdr and cons are convex ([Nelson and Oppen
1978a)). The theory of arrays is pon-convex. For instance, the
formula x = storela, i, eXpay»aljl entails the disjunction 1 = §
AXwevisjaxey

"Consider again the complexity results given above for DNF
quanufier—free combinations of theories. 1 at least one of the
theories was non-convex, the DNF combination Wa NP-hard.
The only combination of theories for which the DNF satisfiability
problem admits 2 polynomial solution wal 2 combination of two
convex theories.

.

Suppose we have two copvex thearies S and J, and that
for each we have 2 deterministic polynorni:l time decision
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procedure for deciding satisfiability of cononctions of literals.
Then we can decide the satisfiability of 2 conjancuion Fn ther
gnion in polynomial time by the foliowing procedure (see [Neison

and Oppen 1978b1).

{, Construct FS and I-‘T from F as in the nondeterministic

procedure in section 2.
9. If either Fs or FT are unsatisfiable, then 30 15 F.

3. If either Fg OF Fr entail some squality between variables
not entailed by the other, then add the equality &8 & NEW conjunct
to the one that does not entait it and go to step 2.

4. If this step 13 veached, F i satisfiable.

Steps 2 and 9 can be executed at most n pmes, where nis
the length of F, since thers can be mostn variables in Fg and Fp.
and thera can be at mostn - | non-redundant equalities berween
n variables. Step 9 takes polynomial time. Step 3 also fakes
po!ynomial time: to determine fx=yH entailed by Fg, 53y, We
check whether Fg AX # Y 15 unsatisfiable.

This procedure {herefore runs in polynomiﬂ time, &nd
leads to the following theorem {suggested bY Chris Goad):

Theorem 2 Let 7y S 9, be decidable, convex.
quamil‘ier-!‘ree theoriet with po common non-logical symbols and
with deterministic palynomial ume DNF satisfiabitity problems.
Then 7, v Jyumv J, hasa deterministic polynomial time

DPNF satisfiability problem.

6. Case Spiitting

it the theories being combined are non-convex, the
nondeterministic procedure glven in section 2 for combining
satisfiability programs translates in the obvious fashuon into 3
deterministic procedure. The incoming formul {s converted into
disjunctive normal form, each disjunct ¥ massaged into ont
containing no titerals of "mixed” type, a case split is done on all
the ways that the varfables in each conjunct can be equal, and
the individual satisfiability programs are used to determine the
satisflabitity of each branch of the spiit.

This simplistic Way of combining satisfiability programs 1
of course rather inefficient: a superior method fs given D [Nelson
and Oppen 16781 However, It 1s interesting to briefly analyie
the running time of this brute force algorithm since it illustrates
the imporiance of case splitting.

Assume that the size of the original formuta is & The size
of each disjunct in dis junttive normal form s thus Oln}; there
may be 2" disjuncts. Under a reasonable model of computation,




time. But what if we restrict our attention to formulas already in
disjunctive normal form, that i, to quantifier-free DNF
combinations of theories?

The satisfiability problem for some quantifier-free DNF
theories (such as the theory of integers under addition or of
arrays under storing and selecting) is already NP-hard, and any
theory including such a theory must therefore be at least as hard.

However, if we further resirict our atiention to
quantifier-free DNF theories wilth deterministic polynomial time
satisfiability problems, we might hope that their quantifier-free
DNF combinations alfso admit deterministic polynomial time
solutions. For fnsiance, we might consider combinations of the
quantifier~free DNF theories of integers under successor, equality
with uninterpreted function symbols, and list structure under car,
cons and edr (with axioms {I) or (3)) since each has a
deterministic polynomial satisfiability problem.

. T'he results are mixed. For instance, [Nelson and Oppen
1978a] show that the satisfiability problem for the quantifier-free
DNF theory of list structure with uninterpreted function symbols
has an O(n?) solution. On the other hand, [Praut 1977} shows
that the theory of integers {under successor) with uninterpreted
function symbols is NP-hard.

These results are closely related o the property of
convexity. Recall that a formula is nen-convex if it entails a
dis junction of equalities between variables without entailing any
of the equalities alone; otherwise it is convex. Define a theory S
to be convex if every conjunction of S-literals is convex;
otherwise if is non-convex, )

Some of the theories considered In this paper are convex,
others non-convex. The theories of integers under addition and
of integers under successor are non-convex. For instance, the
formula 1 X $2Aay=iA2«=2entailsthedisjunctionx =yv
X = 1 without entailing either equality aione. The theories of
equality with uninterpreted function symbols and of list structure
under car, odr and cons are convex {(Nelson and Oppen
1978a)). The theory of arrays is non-convex. For instance, the
formula x « store(a, I, e)j) A y = a[j} entails the disjunction i = §
AXmevia fAXwY

‘Consider again the complexity results given above for DNF
quantifier-free combinations of theories. If at least one of the
theories was non—tonvex, the DNF combination was NP-hard.
The only combinaticon of theories for which the DNF satisfiability
problem admits a polynomial solution was a combination of two
convex theories. '

-

Suppose we have two convex theories S and J, and that
for each we have a deterministic polynomial time decision
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procedure for deciding satisfiability of conjunctions of literals.
Then we can decide the satisfiability of & conpnction F in thewr
unjon in polynomial time by the following procedure (see [Nelson

and Oppen 1978b]).

f. Construct Fs and FT from F as in the nondeterministic
procedure in section 2.

2. If either FS or l-‘T are unsatisfiable, then so s F.

3. 1f either Fs or F, entail some equality between variables
not entailed by the other, then add the equality as a new con junct
to the one that does not entail it and go to step 2.

4. If this step is reached, F is satisfiable.

Steps 2 and 3 can be executed at most n imes, where n is
the length of F, since there can be most n varables in Fs and Fo.
and there can be at most n ~ | non-redundant equalities between
n variables. Step 2 takes polynomial time. Step’ 3 also takes~
polynomial time: to determine if x » y Is entailed by l-‘s. say, we
check whether Fe A x wy s unsatisfiable.

This procedure therefore runs In polynomial time, and
leads to the following theorem (suggested by Chris Goad):

Theorem 2: Let J,, J,. ., J, be decidable, convex,
quantifier-free theories with no common non-logical symbols and
with deterministic polynomial ume DNF satisfiability problems.
Then I, v T, v v J, has a deterministic polynomial time
DNF satisfiability problem.

6. Case Splitting

If the theories being combined: are non-convex, the
nondeterministic procedure given in settion 2 for combining
satisfiability programs translates in the obvious fashion into 2
deterministic procedure. The incoming formula is converted into
disjunctive normal form, each disjunct is massaged Into one
containing no literals of "mixed” type, a case split is done on ali
the ways that the varizbies in each conjunct can be equal. and
the Individval satisfiability programs are used to determine the
satisfiability of each branch of the spiit.

This simplistic way of combining satisfiability programs 1s
of course rather inefficient: a superior methed is given in {Nelson
and Oppen 1978b1 However, it Is interesting to briefly analyze
the running time of this brute force aigorithm since it itustrates
the importance of case splitting.

Assume that the size of the original formula is n. The size
of each disjunct in disjunctive normal form is thus O(n); there
may be 2" disjuncts. Under & reasonable model of computation,
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Abstract
W2 discuss & methodology, using the Edinburgh LOF systes, for
generating large formal proofs fn & natural and structured way,
Zechnigues Lhelude the use of (1) user-propraamed scracegies vhich

ereansulate conzon pakterns of inference, {11} operaticny for buitding
cozpiex strategies out of sicple onds, and (1£4) the abflity to set up

asd  wagk  within lhierarchies of axiomatic theories. These are
fllvetrated by che prool of carrecress of a sinple compiler.
Anteeduction
Bcrause programs are coaplex objects, the prasis of thelr
propervies are typically long, tedious to carry out, snd difffeult to
structurt. Systems for perforaing or produting formal prools rely on

adsmption that a certain portion of sost program prnofs consists
are In seme sense routine; . such systecs beccrne
attractive when they can clain to handle bodies of routine detail
autoaatically. The portion of ptoot thought 1o br Touline varfes from
jast & lrile, im the case of procf-checking aysteas, to rather & lot,
in automatic thepreme-provers.

the
in steps vhich

Given that the user of a sechanical proof systes must mane S5sL
contribucion to the proof process {if only to state the grall, one can
classify and aswas: these systess according to tha nature of the
user-system inceraction required te generate proofs. Aseng the
questions one might ask about these systeas are: How doen the wuser
drive tae proof processt Wow natural is the interaction? How cleazly
does the user’s seguence of contributfons parallel his or her
fntuttive “‘plan’ for carrying out the proof? At what level of
abstraction {from the artual inference SEeps) dors the interaction
ocour? What 1B the nature of the finished produc? == inm general,
Bow is the proof atrexpt erganised and grructured?

T4 this papar we aédress these questiond in
pirticular  proofsgeneration  #yscea (E¢inburgh
Computable Funcifoos, [5}), and a parcicular preof  perforsed within
that system {a preof of correstness of a siople conpiler). The study
is intended as 2 step in developing & wethodology for generating large
forepal proofs _Li_a_nnwnl ad srructured wiy. The aics in generating
the proof {and of LG7 in gendral} have Loen to investigace the wys in
hieh  fnforwal  strategies fer conduering proais can be exptessed,
sanfpuleted acd pereralised, and the exient to which their production
can ta =ade entesatic,

the contexs of

.
LCF, Llogic for

Edinburgh LCF, {oplenented in 1975 151, was based on Stanford LCF
{16}, It provides a frmework which can acconcdate many styles of
proef, frem proof-checking to autesitic thesrez provieg, st the
discretion of the user. TFescures vhich make the systes ueeful acd
flaxible are

avaitabilizy of a legic ({BPLAMEDA, for Polymorphic
Lazbda Calewlus) in which che propertiss of
semantics can be directly and edslly

1. che
Predicace
progzams 4nd their
staced;

the availability of & gennral= purpose
{HL, for Kets-Languagel, in which the user esn wvrite proprasns
te manipulate PPLAMEDA objects, {n particulat, Pprograzs to
encapaulate patterns of ioference or strategien for doing

proofa;

programuing language

tacilitien for metting up and working wvithin hietarchies of
axiomutic theories vhich extend the basic logic
for

s built-io bedy of basic strategies {and operations

combining thes inte couplex onen) and

factlitioa for doing routine and user~apecified
siwplificationn (re-vrites) sutosstically sod efficiently

ML 13 » higher-order programaing language, with & type discipline

allows user-defined (posatbly polymorphic) types. PPLARMDA 15 8

that
atosic formulas

lopic based o8 terms from the typed lasbda calealus,
’thch are  equivalences or {nequivalences batwesz tearms, apd coapound
Tormulae built wp as fo the predicate calevlus. In HL, beride the
wsual types (integer, boolean, wte.}, types avs defined to correspend
to FPLAMBOA constructs {teétm, formuls, theorea, atc.) and functions on
PRLANBDA copstructs (rules of inference which produce thesreas =8
TerslLs) . -
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. questions suggested above, vt hive
chosen  to study the generation in LCF, of the prosf of correctness of
a compiler for a simple Algol-iike lunguage [41. The compllation &
considered fn stages, ach stage concerning feself with the recoval of
ooe high level construet im favour of a tow=level one, 1t {1 hopec
that the fsctoring of the compilacion Ipto stepes will sa¥e the proc!
easier and more wodifiable. Ome wtage, for exazple, consists in
ramoval of block-structuring In favour of stack=handiing cperatisns.
The stsge thet we describe hare deals with tke resoval of two
constructs, while-loops and econditionats, These are repliced by
coabinations of ffrnot-jussp atatements and go-ta ststesents, in 3
tanguage vhose progreas Are sequences of labeled statements.

fn order to approach the

The compller described for this stage fs based closety on &
formulatdon by B, Ruseeil  {14]). In arder to desl with an
close to

independently-motiveted probles, we have eopayed o ECay %)
his statement of the probles as possible.

foraalised wsing denotasional
langusge and the target (law
that is, $emantic

The compfler and {ts proof sre
semantics. Both the wource (high level}
level} laongusge are piven atandard wemanrics,

functiont mapping prograae 1o functiens which are their mesnings. The
compilier is apecified as & fumctien mapoing source-language  into
target-lenguage prograne, The atarezent of coptectness is that the

meaning of & source progran ia aquivabent to the scaning of {13 izage
progran under ceompilation. The following diagraa iilustrates these

relations:
tospilar

target lasguage
prograns

souree language
prograss

target Lasguage
sezantic functioe

Jource languwsge
seapacic function
1

SOUrce languape

targec language i
sepantics

jesantice

«gquivalence

The donforeal preof piven by Russell fs1 In fact dncorrect {see
Section 3}; that errors can (and are likely to) eceur in proofs ol a
certein stoplexity is evidence of the oeed for formel, sachine-checked
or ~generated proofs. Me have sypplied & correct proat .

tn what follovs, we will describe the problem and the informal
proof, aketeh the forvalisation En LOF, and describe the vy in which
the stratezies for generaring the informal proaf are translated into
ways of generating the proof in LCF.

2, Toe Problen

To swmsarise, W preaent the source and target languages given
Raweell, in BNF notatfon. We let hp, hpl and hp? (and sometizes p,
and p2) range over & domiin HEROGRAN of high level pregrass, x over 4
set ID of ideatifiers, und ex over a set EXP of expressicnt,

Source lanpuige

hp 1rm aseign (x, ex) {
1f {ex, hpt, hpd) | *
while {ex, hpl} |
conpound (hpl, hpd)

For the carget lapgusge syntax, x and ex are &4 above, while ip
and 1pl range over & demain LEROGRAY of lovelevel programs, 13 and Ist
over a demain LABELEDSTATEMEXT of labeled sratecedte, t evaer a dessin
STATEKENT of stateaents, sod L over a dosain LASEL of labels.

Target lLanguage

<1sl, ... lso, L>»

L: ¢

assign (x, ex) i

iinot tex. L} |

goto (L) ]
prograz (lpi}

B otswLP L2 ALY

lg tim
1s 11~

| S R

IR A

LL-LELE U
L%

The compiling slgorithe is defincd [or the various
We use an informal notation fn wiich, fer exezple. Mif ¢ o= a3$igA
ex) then ..." tests vhother t 15 an assigreent, asd {i s9, eval
with x and ex bound te the correel coTperents of the assigmiesi




satement, This [s easily forsalimsble fa lzabde-notation. (W oait
rogren” fn the progras-stateents below, writing "eospiler pl”
wmther that "progras (coaptler pl)"}h.

Couptler
conpiler p = 4f p v aanign (x, ex}
then L1t ssstgn {x, ex)
L2

alae if p = Af fex, pl, p2}
then Li: ifnot {ex, L4}
L2t etmpiler pl
L3: gote {L5)
Li: coapiler p2
is
alve Lf p = vhike {ex, p1}
then Ll ffnot (ex. L&)
L2t conpiler pl
13: gote (L1}
L&
else 4f p = coapound {pl, p2)
than Lt compiler pi
L2: compiler pl
L3

(The extra terminating labels are present for technical Tezsons
only.) Xote that the structure of expressions {3 not considered in
further depth, 30 the problem of expression coapflation iz put aside;
sad  that assignzents are not compiled, but simply pawsed along. An
assigraent can be considered s either a source langudge progrez of 2
target  langurge statement. We abso note the presence of the
pregram-statezent in the target langwage; 4 wvhole target Yanguagse
pregTe= can be considered 4z a2 statement in a surrounding target
lazguage progres. This block strocturlng in the target Tanguage has
the effect of sagregacing the inner labels fros the guler ones, so
that only five labels are ever needed, and the functien of each label,
in the wvarious <¢ases, I» fixed. {The problenm of the generstion of
distinct labels is thus factored out snd 15 considered ac a later
stage of the compilation, This very useful factoring is due to
Rusaell.} For  exsople, the label 12 alwvays labels the
propTas-statesent which $s the code for the body of & vhile-losp, in
the while case,

¥e give the sszantics of the two lenguages they are sgain besed
closely on thoxe givea by Russell. Bavevar, for doing the inductions
teguired in the prosf, it will be necessary to be more precise about
£efintng the semantfc funccions 43 lesst  fixed peints of certain
fusctiierals (as they ave recursively defined, and {n the low-level
scaantien ease, wutunlly recursivelyd.

Yot the sourse language semanticd, we will need the doaafns 1D
erd EXP, as mencfoned, and anether, VALUES, for basic values,

{ocluding truth values.
Ve need n domaio STORD acd asaocisted function eval te evaluate

wxpressions Lb BLOTES: A

STORE = ID =» VALVES
evali EXP % STORE => VALUES 3

and 3 semantie function which ve call heem, for high level sezaacic
tunction, of type:

T haear HPROGRAM ~> STORE => STORE )

hsem s the Seast fixed point of the funerionsl haeafun:

haeafum & Jhaes, Ahp. As.
if hp = aeign (%, ex)

then § feval (ex, 8} / %)
wlse Lf hp = if (ex, hpl, hpl}
then 1f eval (ex, )

cthen hser hpl
alse heen hp? &
elee 1f hp » vhile {(ex, hpl)

then it sval (ex, s}
then {hsen hp) (hsem hpl =)
else 2

alst &f hp = cospound (hpl, hp2)

then (haez hp2) (haew hpl 1)

L This Ls a sxendstd direct semantica, snd requires little cowaest.

Tor the low-level semantice, we need the following sesantic

domating:
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CONTIRUATION = STORE -> STORE
TARELINY = LABEL -> CONTINUATION

snd a semsntie funetlion lsem (for Jowlevel}, wmapping targe:
languape prograse to label environoents.

[Taen: LPROCRAY =» LABELENY 1

Label environments map labeis to continustions; ¢ach label fn &
terget progrem is asseciated with the tontinustion {wtore to store
function) which represents the meaning of the prograa fres that ledel
to the end of the progran, For this, we need snother arzaniis
function (lsemstataseat), of CYpe:

i Tseostatenent: STATEMENT =» LABELINY = CONTINUATION ->
{LPROCRAY ~> LABELENY) =3 CONTINUATION

1seasracezent 11 defined, for the variour construces:

Leemgtacenent t & ¢ lsex =

4f ¢ = ansfgn (x, ex}

then Ae. ¢ {5 fevel (exy 8} 4 5D)

else if t = ffnot {ex, k)

then k. 1€ eval {ex, 3} [
then € & i
else ¢ L &

elae Lf ¢t = goto (L)

then et

eise §f v = proprés {lp)
thea As. ¢ {1pen 1p L1 8

This is straightforvard fn all but the prograp-gLatenent <Case;
in that cage, oete that the label esvirvommeat i disregarded, and the
continuation provided i spplied to the meaning {found by applying
lsem, the seaning function for vhole target prograas) of the prograc
which constizutes the program-atatesent, thuet isclating the fnnet
lavels an desired,

Tee function laea, giving meanings to vhole low 1level prograzs,
i3 to de the Least fixed peint of the folloving functional ("eempiler”
16 abbreviaced to “cemp” here and elvevhere). -Lac {3 ot undefined
element in the demafn LABELENV, and ¢ {ed J LI} o . o bem / Ln
desotes the lsbel environment s with the continuations el bound to the

labels Li.

lses = F1X leenfue l

leexfun = Alsez. Alp,
if Ip = Ll: tl
L2: x2

in: tn

Lnt}
then
Ldloemstatement t1 {loem 1p)(lses 1p 12} laca [R5
{laenstatemene £ (lsea ip){lses lp L) laem / L3

[lacantatement tn (lees 1p)(ises lp lnei) Jaex /Ln}
{(hs.8) / bnel)

As lmea and lsemstatament can be seen to be mutually Tecursive.
we use the standard device of pessing alenp # functional srgusen:.
whith explafns vhy lsemstatement needs {ts last sygusent. Tinally, wve
state the formula vhich represents the correctness of the compiler:

IVp. hser p = [Fsex {eozpiler p) LI

That s, the meaning of any source Jangusge propram is equivaient
te the meaning of the toapiled version of £t ( & Iabel environaent {n
vhich its labels are attached to continuaticns), spplied to L1, the
firat label of the progras, Intuitively, this wvill be the aeaning af
the first statemant of the cospiled progre=, £n the label environment
of the wiole compiled program , with the continuatlon for the ecs: of
the proprea, Kote the rezursivenzss here,

this ts the fommuls ve go on to prove, first Informslly. snd then
in 1CF.
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presance of fun:unnnu raised L& poweThs ehe proeis cf
jmitar i the twe directiond. so for
in the first

casehy &
the gnduction aceps dtd very 1
plaplicitys wvill rescrict the Siscussion ¢ the proci

This plan produces & eree of suctensive subgosis: wt
direction. {The bases a7¢ proved by un
as & lewad thet 1semstatenent
To conVEY pre flovour ol
complexis¥ frvolved. 1
{aforzaily. Lat’ s sUPFOSE ve are

consider fof atbitrery B T p. heen P c 1s

basls step
1

[ a o+ )
the proods and Lo suprest the leved o
. gp throvgzh & =il sesies of
proving that

= {eocpiles P -

so we Tave pssu=ed. F1) hy;\othui!.

aad vish 1@ show LleT arbitrary p) the aneps

¢ compound
cast € case - £8se
gyppose. f07 exeples ¥E aze nev conaidering the while €3ase-
P whiie {exe pide By wnwindizg hgosiun, WO reduce N€ Teft

L {-

wowind
auccessively

48, 1f (eval (ex: 8}
thes nses” Fi ¥ \
slre hee=’ pr s 1

assigment conditionsl vhile coupound
case case case case

wae inductioh hypothesid

15




3. The loformsl Froof

At viy mentioned earlier, Rursell’s preof im in fect inmcorrect,
It &0 wlively that the formula can be proved ar an equivalence {see
Miine [37 .} fuveel]l triex to prove it by doing & wsimultaneous
computatiss j§aduinfon on the funecions hsem snd coapller. The proof
we have found divides the foraula into a pair of inequivalences:

¥ p. heea p S 1sen (compiler p} LI

“p, haem p 3 1sea (compiler p) L1

The first fn proved by femputstion fnduttiss en the functiom hoenm.
The i=2fuesifon tule (5 vhich we appeal can be stared, tor a formula
vl [ ], and a definition §- f = FIX fun, ss:

basis: vidi)
step: W L°. wfT ) B wifun ']
cozciusions v [ FIX fun ]

Thus, the banis and :iep are, respectively:

¥ p.lp E  lses {coapiler p) LI

¥ p. heea” p- L lsen {compiler p) L1 =
baeafun hsen’ p E laea {coapiler p) L}

that i3, for the step,

YV p. haea' p L laen (coupiler p) LI
{is. 1t p = sspign (x, ex}
then o feval {ex, &) [ x|
else if p = if (ex, pl, 72)
then K0 Ceval (ex, 8}
then haez' pl a
else haen’ pil s}
elee . . c

loem (ecmpiler p) LI

The basis &9 seer to be trivisl, The step {1 done by conaidering the
four cases (corresponding to the four high level constructs). For each
caee, vr juccesnively unvind occurrences of lsca and lseastatement {on
the rsfght hand  mide}l, wuntil efther che twe gides are ssen to be
eguivalens {in the aesfgraent case) or ontil the {ndvitfon hypsthesis
can be used {in the other three cases). We can suzasrise the informal
preof by giving & plan ot atrategy for performing it:

Do indurticon on hsam, then prove for arbiecrary p, The basis
cxde i trivial., Yor the step, divide inte the four teses,
s0d for aach, do sutcessive unwinding watil efther the lafc
#ide snd the right wide are equivalent, or wntil the
indurtfon hypothesis can be instantciated.

This plan produces a tree of succesafve subgoals:

[ Do induction on haem 1

i
basia ulgp

consider for arbitrary p j

basis utep
|
[ sioplify ]
{
atep
I
! consider the four canes

¥
un!;réen: conditdionel vhile coepofund
case cane case  rcase
! 1 1 I
unwind laex and leemeistesent
successively 1

condtefonal whille compound
Cake case case

| | '
iif ( use_inductien hzga:hesls[
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What we wizh to examfve, in generating the prool mechanizally, 1s
the relatfopship between thin plan and the intersction with LCF
Tequited to prove the [ormula.

The other direction (2 ) has to be proved In a wore cozpllicated
vay, We vill do {nduction on Leea. BHowvever, the fecursiveness in the
labe] environzent wakes this difficult, as we will want to “unwys2"
¢alls of it that occur recursively (euch as "Jses’ (comp pr L2, and
W cannst unwind an induction variabie, {The step §5 claized to be
ttue for alf lsem”.} The solutiuvn J& supgested by observing the way in
which the computation Induction tule "unwiade” the furctaaral ence for
us; vhat we need §5 a tuwie of frerated eotputation Induriisn o
unwind any tuaber of rimes, fun™p  x means fon tun oo ffurn 2el.,0,

n tined,

bagis: vis] A
Yow [fun &) Fy i

step: ¥ €7 (v [ £7 ] "
witun ] &

v [fun“n=} £" 1} D
w [funn {7 }

i
{
' v [fun™n-1 1}
|
:
! conclustens w [FIX fun }°

It fs vot difffeult to sbov thisz is derivable “fron— ordinery
computation inductien, by extending the coasequent of the sieg ¢ ¢
tonjuction. We have, in fact, derived this vule of fnferente in LT,
from the byllt-in rule of computation incuctien, (Ciher Cesired riles
ckn be sizilarly derfved, for exsmple, stroctural inductien ruses.:

In the longest case {the if case) we need four wunwindings (%
4). Thus, for the othet direzction, the baafls if:

t
E N p, hae= p o {coopiler p} LI ’ .
v p, hsez p 3 leexfun  (compiler p} LI n .
¥ 7. hsmp o leexfun™2 (cozpiler p¥ LI A~ .
¥ p. htes p o  lazesfun™d  (conpiler p) Li H

and the step Is:

W lsm’.{vp. heez p I 1sea’ (compiler p} LI A
vp. huea p 3 lsealun jser’ (cocpiler p) LI ~
wp. haen p =t lsenfun”2 Lyee’ {eompiler p} =i 2‘
vp. hiez p 7 lsemfun™} laee’ (compiler p} LI} =

¥p, hsea p 3 Teeafun™s lsen” (compiler p) L

Recall that lsen » FiX leemfun, Anide from the proliferation of basis
cases, and the presence of functionals raised to powers, the proofs of
the induction eataps are very similar in the two directions, 30 for
slzpiicity, we vill restrict the discutsion to the proof fa the firse
direction, {The bases are proved by unwinding as wvell, snd by proving
an & lemaa thet laeastatement t L 1 % & )

To conver the [lavour of the presi, and Lo suppes: the
complexizy imvolved, we wili ge through a szall sestice

informaily. let’s suppose we are preving that

ievei <
i

of it

Ty hsemp £ lsex (copiler pb Ll

30 ve have assi=ed, 88 hypothesis,

v ¥ p. hsen’ p b Jpex {eompller pt U3

444 wish to show {for arbitrary p} the step:

1 hgeafun hsez’ p G lsex {cozpiler p) LI )

Suppese, for exaaple, we aTe nov considering the while ca
p = while (ex, pi). By unwvinding hsexfun. we reduce the

te:

:
| L. 1f {eval (ex, 9 i
! then hsez” pl s i
H elre heea’ pl s | !




To organfse the ceapiler proof {as fn the diagrea in Sectien 1),
we will want to build theories about the syntax of both languages, and
perhaps theorien of the ayntax and aemantics vhich are shares between
thes (just to keep chings factorcd). For exsmple, essignments are
eom=eh to both the source langusge and target language Byatax and
stores to both pesantics. We wiil also vant theorles of the scrantics
of both fanguages, each semantic theary having as 3 parent the
sppropriate  ayntox  theory, &ince the semantic  functions act wpon
syatactic entities, The ¢ompiler theory will requite both syntactic
theories as parents {and 30 will have the two wyntax theories as
sncestors}, an the compiler it & function from source language
Programs to target language progrand  {(syntactic eatitiesd. The
correctness sacacement and preof will be in 4 theory havinp both
f2z3atic  theorfes as perentx, W& can  picture the axructure of
theories 25 follows:

L' label theory i

shared syntax
theory

A\

[ high level shared semanties T ov tever i
syntax theory theory i syctax theory

l )

high level i ‘( Low level

seEancics r.hwryl coupilar _] (sezantics theory
|

theory
H
coapiler correctness
theary

To give & furcher 1dea of the nacure of thegrles, the
syntex for the source language tas be pictured as fallows.
ASSIGK are foherited froe the shared syntax Cheory,

theory of
EXP and

destif: HPRCGRAN -> 1T
tsff1 HPROGRAY ~> tr
(et}

patent theory: shared ayntax theory .
types: HPROGRAM = ASSIGN + IF + WHILE + COHPOUND
IF = EXP x HPROGRAM x HPROGRAY % HPROGRAM
WHILE = EXP x HPROGRAM
COMPOLND = HPROGRAM x HPROGRAN
E constants: akif: IF => HPROGRAM
t
I

We would alss Introduce axioms defining the new constants "ieif",
"ekif", “destif" and the rest, in terss of the injection, projection
23¢ discrininster fanctions for sum domsins vhich are built inte

FAANEDA,

the theory of low level syntax is buiid io & similar fashion.

iatroduce nev constants

1t the high level asmantic theory, we
function discunsed esrlier

"heen" zad  “hseafun, and  the sesantic
appears 1% an axiimi

parent theery: high level symtax theory

CONSTENLE ! heess HPROGRAH > STORE =-> SYORE
hseafun: (HPROGRAM => STORE -> SYCRE) -»
. HPROGRAM => STORE -> STORL
1
axfean: 1« heen » FIX hseafun

1= haeafun = Ahsena, Ap. s,
4f fzzssign p Chen 4 ..
alse if $24f p then ...
alse if favhile p then ..y
else tf facompound p then ...

Hotice the vay In which the usual syntactic and semantic domsin
equations are raflected as new types in theories, and the sawsntic
equstions as axiomm.

The last theory to be built fs the compller correctaeas theory.
Any  helpful lemsas (such as mentionsd in Section 3) can be proved and
recorded in this theory.
To sunmarise, we hava sxetched the structure of theories in vhich
. the problem i3 formalimed and in which the proof takes place, Since
we vill work It the compiler correstness theory, all of the types and
sxions and lewmay of the other theories are availsble. This iz the
first of the tvo main ways in vhich LCF gives a mesas of structueing
and  organizing  precis. The second, the method of tactiecsl
prograzsing, is the suvbject of the next seetfon.
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5. A Sore Turorial on ECF: Cloaswup af the Prool

7o introduce LCF and proof 1in ECF, we will focus In orn
serticutar ssction of the proof described lo Sectlon 3, shoving how
the proof acteapt f= LCF might proceed,

Suppote we have somehov got ap fa7, in generating the proof, as
the point at which o noted that the reat of the proed consfsted of
some uses of the induction hypothesis. Suppose that we are 1n  the
while case of the inductfon step. We now have o subgoal sheac of wvs:

E [rs. §f eval f(ex, 3}
then (hsee’ p) (hzez” pl 8} else 8] E
Bhe. 11 eval fex, 8}
then (isem (coapsher py)(laea {compiler p) L1 3) elee u

Howvever, there {# vofe to be said about Lt than this. For one thing,
there are some sssusptions thal have been nade, snd we can use ther.
Thess are the Snduction hypothesis and Lhe current case assueption.

£ lses {compifer p) Ei

Y.

p = while (ex, pl} . .

haea’ p

Is additicn, suppose that wt have proved the lemnas neationed eerl

having ancicipated thar they will be helpful. {They will, fw f

atready have been used in the proof, durisg the sequense of unfoldix
that led to the current subgoal.) Ve might desire that these le
applied automaticaily {as rewrites or sizplifications}  wherever
possible. 1f  wo, we want to inciwde them an pare of the subgeal, sa
that they are available vhen needed. Thus we will define & go2i to be
a4 triple, consisting of a forsula {to be proved), a ser of usefu]
sizplifieacion rules, and & }ist of forawlae representing the currenl
useabie assuaptions, The sbility to define goaly so that we caz keep
track of this relevant auxiliary informacion is enother afd provicez
by LCF for structurfag proofx. Now, our subgoal can be denoted as:

tif eval {ex, 23 then {haen’ p}ihsem’ pl %) else 57 €

forzuls:
[1f eval {ex, &) then (lsex {eco=p p} LYH H
{ise= (comp plY LI 8} -
slmpser: |=¥p'. p7 = whike (ex, pl} = f
ksem (comp p') LI = jaessrarement{ifnot{ex,Lal} }
(laeo (comp p')i{lse= (eonp p") L2} laes |
(etc.}

arsumptioos: p = while {ex, pl}

vp. hiem' p [ liem {cospiler 5} L1 !

Hext, v will have to be precise sbout whar it weans Lo
goal. e will ke satisfied, n regard to our current goal,
produce & theorem matching the formuls part of the goai 2nd
on ne Aasmcptions beyond those in the sagurpricns st
gosl {or on which the stmplifications depend;.

Let us use the following notatien for the goal-subgoal

-

£}

1815 828 «v0 3

to mesn that fn order to schieve the goal g, one should try Lo 2e-ieve

all of the subgoals in the 1ist below,

Ve wuld now 1ike to design & detailed plan for workiag on
current subgoal but we’ll be more general. In each of the faur
cases of the proof, we expect to arrive at meme point &% vhick etitter
both xides of the formula (an inequivalence, we'll presusze) are easily
shown to be equal, or ar which sn Instance (or several instancest ef
the inductton hypothesis will be “embedded™ in the formula. b
to the plan, we ¢houid elcther notice that » trivial sizplificarins if
needed to finish, or If that i& not the case, try "taking aparc’ the
terns on either side of the inequivalence in an effort to find an
inetance of the inductisn hypothesis. Suppowe we teke into aecaunl
three ways in which the induction hypothesin fnstance ¢sn be exbedded;
the teras on either sfde of the inequivalence zight
Lembda-expressfons, they might be coabinatians, or they t
condftfonala, The three subplans needed, then, can be denzied by the
figures:




(ho. ) g (Ao, t2), s, Eeet

wax

ttl &2, =e, aset]

(1f t] then t? else t3) £ (if t1 then wl else u3}, e, a8t

nan rermmssn
tedgu2, ww u {t]l = TT}, aeet w {tl = TTH;
t35u3, asu {tl = FF}, aset u {t] = il

{tl ul) g {t2 v2), ss, amet

feigt2, s, amge;
wlgu2, =s, aset}

in esch cass, that 1w, to achieve rhe gosl {on top), one should try to
achieve the subgoal{s) In the jisc {on the betteal. This soal=subgoal
relation iw pne featurs of the subplmns, The other feature Is some
informatfon on exactly hov to achieve the goal, ones the subgoslis) ia
(are) schieved succesnfully, When the subgoals have been schieved, we
vill be in possession of lists of theorems of the forw (respectively):

A - tlgel
{ A= t20u2; A |- t35u3}
A §- elat2; A l= vlgul)

vhere the assumptions on the lefr all belong to the asmumptions lists
of the correspocding svbgoal. Shet we want nov 12 & method for
obraining the theorems which {respectively) scthieve the origical
;::ll. That is, ve need functions taking theores lists as above to
thadreas

eee = {hs, t1) € (k8. t2)
eee b= £4f t1 then t2 elme t3) 5 (Lf tl then ui else u))

e |- g1 wi}if2 wd)

Thoae functions are buile up from cthe rules of inference for PPLANADA
provided 1n LCF, In the firsc case, ve simply use the banic inference
rule LAYGEN, LAMGEN £1 of type {tera => theorem -> thaorem). We'll
denots this rule of fnfevence using the follewing notetion:

3, Al-tl& tl

Al- €hs.tl} & {he. t2} vhere # {8 not fres in A

potiag the proviso, 1In geneéral, inference rules take one or more
theareas to & new Cheorea, What £a vital here {9 that the built-fn
rules of foferente {or ML prograas constructed fros thea) are the only
functions which c¢sn Feturn theorems as results. The typs-checking
descipline {8 ML assures this. Thus §t's fispoasible to crexte
theoreqs nat derivabla in the logic.

The anthod of achieving an origdinal goal will be represented a3 2
(unctian taking & List of theorems respectively schieving the l1ist of
wubgoals to a theores achieving the sriginal goal, 1In the first case,
ehat funstion wvikl be {given the term &):

Athifat, TAMGEN = {heed thlime)

Such & fusction is called & proof (s defined type in ML),

The proofs for the othar tus subplsns sre  siniler, uaing other
FHAMNBDA infarence rules for the monetonicity of fusction application
asd of comdfticnsls.

A proof plac (henceforth called a tactic) S» gnother defioed ML
typR, A tectie takes a goal (to be proved) to # patr consisting of »
list of goals (the subgoals) and & proof, a function from & theares
list to # theorem, providing a vay of achieving the goal froz
achievements of its avbgosls.

We now have the basic tocla for discussing tactical prograsning.

. The tactic described thus ([ar can be wvritten as a procedure in Ml.

Wet1) eabl it EAMCENEAC becsuse it fn §n an obvious sense the inverse

of the sSnference rule LAMGEN. 1n the tnformsl notation described
earlier, the procedure would be eomething 1ike:
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LAMGENTAC (v, B8, saet] =
tf we (o, tIre dha. t2)
then Jftl E t2 , #s,  aset], H
¢hthalist. LAMCEN o (head thslisc)) 1

1f v were not of the form indfcaced, LAMGEIKTAC would {il {tc De
applicable}. Taeties for the other two subplane are prograrzesd
simflarly, We’il call the other two tactics CONDTAL (for conditsonal)

acd COMBTAC {for ¢embination), fespectively.

Lets ratwrn to our top-level plan (tactic); we wish lo take
apart the terma on either side of an ineguivalence, sre whether tre
induction hypothesis can br used, snd to B10p vhen all that's needeZ
1 a trivial stmplffication. As an example, Auppose wve have generares
subgoals whose {ormuls pares ars

T,
l;or) LEt

&o a8 oot to burden the user with proof at this Level, a standard
tacete (called SIHPIAC) fa provided in LCF to do such siople bits of
ressoning {ameng others), ap w1l s2 o do any simpiificatiors or
reurites suggested in the simplification set of s gosl, Appliel to &
gosl, SDIPTAC repeatedly perforns a set of banic sizplificatiors anc
atl of the suggested rewrires until ne more cin be done, 13 wiil
return & 1ist of the remafning subgesls, Lf there ate any, 25 well as
s proof function jJustifylng fta simplifications, The ability to co
simplificatfons autematically plays large part En Bmaking the
peneracion of fong proofs feasible in LCF.

The next step in buildiog the tectic is to i together the three
(subjtacties that we have designed. Gives & gonl {thet does not
jwnedfavely submit to simplificacion), we wish to try LAMGENTAC, ang
faiiing that CONDTAC, and failfog that COMBTAC {the order fsn’t
important) . For this purpose, we ust vacricals ; tasricals are
funccions which build c¢oapound tsctics frem known ones. The taccical
CRELSE rakes ¢wvo tactics, TACL and TAC2, and returns & tbactls vhich
applies 2ACL to & gosl =- unless TACI fan't applicable, In whith cess
it spplies TACY, The taseical THEN also takes 2 pair eof eactics, TALS
and  TAt2y Lt teturns a tactic vhich given a gozl, appiies TAC! to the
goal, and TAC2 to each af the subgosls thos produced, REFZAT takes 2
single ctactic, TACH, and returns a4 [astic vhich applics TAZD o &
gool, then to each of the resulring subgesls, ecc., until i1 is no
longer applicadle,

We ean nov build up a compound tactic (call 1t TARE-APART-TAD) to
do nore of vhat we want done:

TAKE-APART-TAC = SIMPTAC THEN
{LAMCENTAC ORELSE CONDTAC ORELSE CONBIAC) H

Fipaily, we will write and use o tactfc (called YSE-ASSIMPTION= TAL)
which aearchet the assuwpeions tist of a goal for s fornuls that
matcher the ¢ne to be proved, and returhs am approprisle subgoal:

18, feer)  ElLooXB. PEE .-a]

23, feeai xlus X, PR TE eea]

where r* 8 r with the iestactistions uned in metehiag p to p'.

spplied to the subgoal with the formula part

I_bnu' p & lees (conpiler p} LS 1

(vhich will be got zo eventually fn the proof eifort), USE-ASSMPTION=-
TAC will return a4 subgoal with s formula perc

Fu- (compiler P} L1 & lsea (ccapiler p} LI l

by matching to the indutcion hypothesis fn the assumptions List, The
above swbgoal can be handled by SIHPTAC, The vhols tactic W vant,

thea, can b exprassed as;

REPEAT {(USE-ASSIMPTIOH-TAC THEN SIMPTAC)

ORELSE
(TAXE-APART-TAC THEN SLHFTAC))

Applied to our fubgosl, thin compound ractiie ylelds an enpty goal list
and & proof that vill take an empty theorv~ list and return # thecres

aephlaving the wubgoal.




Vaing the general tactic (we”1l call it FINISH-UP-TAC} daves ur
having to know the <ourse of the proof ia advance and tt works for all
four cases of the proof (in both directions}. Of course, FIKISH-YP-TAC
could be wade wors genersl mtill, In HL, one can program tactics st
whatever level of genersiity une vants or is capable af.

LCF provides & wetting in vhich strategies 11ke the one w've
just developed can be expressed, varied, toabined, iaproved and
snalysed; {t°s & tool for the study of patterns of ressaning, and the
study of machine-sssisted deduction. The vays in whick this (s s0
should become yet more evident in the next sestfon, In which we
discurs the perfomance of the wiole prosf.

5. The Miole Proof

Bearing in mind the plan ve“ve sketched for carrying out the

?rccf (Section 3}, as well #s the motfon (and potetion) of tsctics im

LCF, we're now prepered to dicuss the proof of the correctensn of the

cozriler as 2 vhole. The folloving tactic, (ve’1l call it WHOLE=TAC),

wher applied to the € ~dfrecrisn goal, gives an empty liat of
subgoals, and the desired proofs

IHDUCTAC THEN GENTAC THEN SIMPTAC THEN
T HCASESTAC THEN H
T UNDINDIAC THEX FINISH-UP-TAC !

e cozponent tactics, of course, need 1o be  explained (exce
FINISHL'PTAC, wvAieh Is an deseribed in Seczion 5) —Pbur. the Eru :;
futcessive sutgcale produced by the component tactics ahould give soxe
idea of wha: the tomponent tactics do. (The tree iz traced out for
the while case}. The correspondence between this tree and che tree in
Section 3 should be noted .

¥p.hses p C Lleea (conpiler p} L1

' 150FCTAC i
li
Esex p. (comptler p} L1 ¥ p. heenfun heez’ p L
laen [{coapiler p} L1

VYrap €
| GENTAC

T
heenfun kaen” p &

ises (compiler p) L1
SINPTAC I

I
’lu- {eompiier p) L}

[
13} €1f p » aspign {x, ex) ,,.3 &
lsem (coapiler p) il
i

[ HEASESTAC ]
' ..1. [£f wval I(n.l) ..1
, then (hazm p)(haen’ pl 1)

else s} c
loea (ecompiler p) L1 E
5

[ rErEaT worinoTaC : i

!.. .f.. [1f wnl' {ex.#)
then (haea” p) (hsen’ pl o)
else a} £
11f eval {ex, 2} I
chen {lsem {¢oapiler p}L1}

(leen {compilar pliLl s)
elge l]f E

[ rswoueTac R

[] ] T ]

3 1} )] 11
Vhen WHOLE-TAC to applied to the mein goal (shown at the top node

of the tree}, ao empty goal 1ist and a proof are returned imoedincely.
The tree gives us the abatract contrel structure for generating the

proot,
e could, of course, do the proof by applying the ecomponent
tattics one-by~one to the various subgosls, and saving the proof

fusceions in order to work bsck up again vhen enpty subgoal Lists were
produced (by FINISH-UP-TAC). In practice, fn fact, ons might very well
vish to etperiment with component tactics for the more dffffeult
subgealy befere c¢oaposing & large ragtie which, like WHOLE-TAL,
Fiadshes the proof In oor stroke.

Let’s pov consider the sub-tactics of WHOLE-TAC, We start with
8o assusptionas, but we will pur various staplification rules in the
sizpiificacion wmet, reflecring the lemass which wiil be useful
{Section 3}. The goal im:

formuist Yp. hiem p £ leem (compiler p) LY
sinpsert j=yp .p* = ssnign (x, ex) >
lsem fecmp poy Ll w
laemntatecent {annign (x,ex))
{1sma (coup p"))
(lsem {tcmp p') LD)
Isen
{ate.)
aspaptions:  Bone

IXDUCTAC, whizh
functinn  on whizk
It returns a list

Among the standard txctics provided in LCF £
taker the lesat-fixedepoint deffnition of khe
induction is to be done, wnd the gosl to bu proved.
of two pubgoals, the basin case and the step, vhere the step has a pev
assumption in its bist, namely, the induction hypothesis. For the
defintcdon |= £ = F1X fun, and the formula w, INDUCTAC 1s:

v, us, asst

{w {&), 58 aset;
v {fun £7 ), as, aset v {w { £ F} ] T

The proof part of INKDUCTAC umes the LCF ipference Tule INDUCT:

Al |- v [4]) A2, v [F° } |- w[fun £7 }

Al u Al |- o {FIX fun }

After applying INDUCTAC to the subgoal, we apply SIMPEAC. and o™iy

finishes the prosf in the basls case. We nov vant another staedare

tactic, GENTAC, to give as a subgoal the goal for an srbityary prograr
B

P

N¥x. v, as, anmet
— .
v, 1E, aset

where x 19 not fres {n anet,

Bow vy have & subgedlt

forsula: {if p « agsign {x, ex)
then hs. s [eval (ex, s} / x)
else £f p o 1f (ex, pl, p2)
than As. 1f evel {ex, s)
then hees® | &
else hsen’ p2 3
elae if p = while {ex, pI)
then xs, 1f eval (ex, s)
then {haea” pi{hses” pI ) !
else 3 .
else if p » compound {pl,p2}
then (hsen” p2)Chsez” pl )]

=
isem {compiler p) L1
siupset: the infeial one
assumpeions: the infttal ones a8 wull as
¥p. hies” p £ laen {compiler p) LI

We wuld now 1{ke to divide the step 1nto caees, for the wvarious
prograns  conmtruces,  For thia purpose we could wee CASESTAC the
atandard cactic in LCF to break a geal into three subgosls, asccording
toe vhether & (given) term d» 1IT, FF or L , sdding the cuse
atsuaptions to the assumptions lists #nd  afeplificstien aests. e
application of CASESTAC would produce the cases for which p = assign
{x, #x} fa TT, FF and L ; simpliffcation will cake care of cthe
undefined case. Ja the false cake, Ve wuld have o use CASESTAC
sgain, &nd 80 on. A useful tectic here would do thix nested ease
analynis for us, sand might ba called HCASESTAC {for high-level cases'.
{1t could be written in terms of CASESTAC.) In any case, we viil en?
up with four eubgeals, (for the four cases. The vhile subgoal, In
particular, will be:

As. if eval {ex.s)

then (hsea’p){hsexn’ pi »)

elee » c

Llsen {compiler p} L1
initizl one and the case masuaptions
¥ p. hoen' p X 1pes {compiler p} E}
g~ While {x, ex}

formula:

simpyet:
sammprions:

In this {and the other casea) wve wish to do the sequence of
unvindings of 1sen and  lsemstatement that we &i4 in the fnliarmal
proof. The tactic to do the unvinding (call ft UNVINDTAC) will unwi=g
the definitions of lses and Isexstatemcnt once e2ch, wniil the
induction hypothesis occurs in the foroula part of the guorrent
subgoal, and chen ainplify. Finally, we use FINISH-UP-TAC te cconlicte
tht prood,

There are many posnibilities, of course, for writing asre general
and sutomatfc tacties. For exeaple, a cacuic could be designed to try
to find sultable fnduttion hypotheses, or to generate Lists of the
useful lemaas by exeainlng #ubgosais, What should be clear Es the vy
in which tsctics can be pregraoeed 4n ML, snd tosbined us:iag
tacticals, to represent wll of these strazegies, #c their varfous
levels of generality,
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« Comelurion

The concepts Lllustrated 1z the discuseios of the groof of
Suewell’s comapiler are those of gotl-oriented proof sod tscefcal
progracxing. In LCF, inatesd of begfnning vith & set of axioms and
Tules and working laboriously towrds a goal, one ean bepin with the
goal, and continue to generate subgoals until 4 krivislsto-prove set
of subgoals §s found, The generation of aubgoakw (by the applicatien
of tactics which reflect proof strategies), is a naturel miyle of
proof. 1t corresponds to the wuy fo which proofs are sbstracted, or
proof plans suggested, vhen people cosmunicste these things teo each
other, Tacticat prograoaing allows varying degrees of automation in
procf atteapts. AL one extrese, tactice can generate sudgoals at &
%asic  level [(tzcties which are ‘fnverses’ of basic inference rules do
this?, requirfog the user to be sware of the decailed course of the
proxf, Towvard the opposite extreae, the user can experisent vith
taetics 1o prave the main gosl fo one stroke. 1In this style, several
alternative tactics can be combined fnto one, uping, for xasple, the
tastical ORELSE; compownd tactics can be designed which analyse the
resulrs of applying one tactic in order to Eind another wvhich is more
apt, Tactics can even be written to iaplenent autoastic theoren
praving strategies. ‘The user, working abstractly, need not be aware
of the details of the proof. What cne ends up vith i sowething that
wight brealled a ’proof story’ or a high-level proof, rather then &
proot im the sense of a sequence of thaoreas wWhiich are efther sifonz
or follow from earlter encries fr the sequence by rules of Inference,
Although one could arrange for this sequence of primitive steps to be
generated, 4t is part of the underlying philosophy of LCF thec the
hizhefevel proof =~ the structure of the proof and the rtactics vhich
generated ft == are wore intelligible and nmore relevant to
understandiag the prool, The structure of the prool attempt sffords a
Sasis for asking generalisations, For proving similar theoress, for
naxing resaris about what proofs {of the sart in question) require,
This 4% the basis for the claiz chat LCF provides a aestting for &
general study of the sores of reasoning needesd fa  proofs of progras
properties.

As msntioned, wve plan to extand the work described by designing
snd formalising & whole wsequance of laoguages, beginning with an
Alpoi=11ke one with block structuring snd prozedure calls, and
progressing  tovard an smseably-like one , We will Jdivide the
compilation process into wtages, sach stage focuring on one {or a
cluster of related) featurels). W will then give the samsncicn of the
lsnguages, raspectively, and prove that each scage of the coapilacion
preserves samantics for the pait of languages in guestion,

This project will obviously depend o the  theary-building
facilicies of LCF for managesble organisation and modulsrfty, It will
depend on LCF's capscity for handling detsfl autoaatically. Host
importanctly, fr will depend on (and test!) the concept of tactical
progranzing. Cleacrly, the proof outlined for this wtage of the
coopilation is very complex; the hope {8 that the szme, or 2 similar,
tactic can be used for the other stages a3 well, What we seek, fn
fact, I8 & coheract body of geaeral tactics (for proving coapilers),
tecticn wiich can be used for the ccopilers ag any of the levels
discussed, or for other compilers, suftsbly foroulaced. If we succeed
in defining & bedy of tectfcs of this sort, we TYeel va’ll have pade
some prograns toward daveloping a methodolegy for machine-asrasted
prograa proef.

8. Related Motk

Other work on coapller correctnass proofs varies in motivation
snd level of feraality sought., The sarly work (fer exsaple, by
London, E7}, and by HeCatethy and Paioter, {B8}), dealt primardly with
giving Informal proofs for cowpilers for applicative languages (LISP
subsers). 5ome vork 4leo concentrated on the use of alpebraic methods
in coxpiler preofs {Buratall and Landin, [3]}.

1n relacion to Edinbutgh LGF, the original Stenford 1CF vas based
on & sisilar logie, bur 41d not inelude & mata-langusge with which to
manfpulate objects in the logic, se that it had no facilities for
tactical programaing. It 41d include facilities for doing autematic
sisplifications, simflar to the curratt ones. stanford LCF wvas closer
to & proof-checking aysten, K. Kilner and R. Weyhrauen, 1972 {10].
deatgned, and partially carried out, & plan for perfoming the proof
of & ecospller, The source lwoguspe was similar to the one we have
described 1o iscluding assigraents, condicionsls, vhile statements and
sequencing; sxpressions were also considared, The target langusge
was such lower level, inciuding stack handling commsnds, A decision
was made to structure the proof by intreduzing concepts from wivarsal
algebra, and proving, &8 subgoals to the main gosl, that the
high=jevel semsntic [unction, the compiler, the low-level pemantic
funcelon, arc,, were all houmorphisas, A structure of eleven
subgosls was ocutlined, seven of whith werz machine checkad, The madn
conclusion of the wark sas that additiomal wtrueturing would be
,required to wmake the prool effort fessshle and the vesults
intalligible,

The work described hire takes advantage of & wore sophisticated
LEF syaten, in weversl ways. Tne sddition of ML to the syatea, and
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the consequent Tacflitfes for tecticsl progresaing, as vell g3 the
facility which allows the developnent of theories, make LCF 2 proo!
5"“’"‘“‘! syates, rather than 4 prool checker, The (nitial work
escribed here eeema to indicste thet the use of throrles and of
tactical progreaming, as vell a2 the factering of the compilation and
the proof into stages, wmay provide enowgh structure that alzehbrais
concepts are not required, The end result I3 not prosi  eiT:l
sccompanied by some history of fts develep=ent, as it would Lese
in Stanford LCF, but & collection of (hopefully) peneral tatiive fo
doing sleilar proofs.

.
-

Another coapiler proof attempt was sade fn Stanford LCF by ¥,
Eewey, in 1975 [11}. Bevey concerned himself with 2 rather Sifferent
problem, proving the correctness of & compiler for a subsel of LISP
(into LAP code}, An operational (Snterprerive} sezaatics vis given for
the source language, and a body of theories was prue'n:e-‘.' fzr the
fntegers, equility, snd other necessary objects end tefations.  The
proof was planned in detail, and a “high level pgosl stpuceure”
sketched, but the proct was deemed too lodg to be cacried out in
Stanford LCF.

A comparfson to the current work is complicated by the choice of
LISP as the source language. An operationsl sezanties $5, in @ sense,
the natural one for LISP, an Lt L8 not, foer am Algel-lfke lanaseze.
Such a memantder 1s eloser dn  Biructure to thr semaniics for toe
target languexe, vhich probably wakes the proof easier. A stzitar use
of theories 15 made in the two profects, although they can be betisr
structured im the current LCF.
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DECIDING LINEAR INEQUALITIES
BY COMPUTING LOOF RESIDUES

robert E.

ABSTRACT

v, Pratt [18] has shown that the real and
integer feasibility of sets of linear inequali-
ties of the form x Sy + ¢ ¢an be decided quickly
by examining the loops in certain graphs, We
generalize Pratt's method, first to real feasi-
bility of inequalities ip two variables and arbi-
trary coefficients, and ultimately to real feasi-
bility of arbitrary sets of linear inequalities,
The method is well suited to applications in pro-

gram verification,

1. Introduction

AntToguctlon
Procedures for deciding whether a given set
of linear inequalities has solutions often play
an important role in deductive systems for pro-
gram verification, Array bounds checks and
tests on index variables are but two of the many
commonh programming constructs that give rise to
formulas invelving inequalities, A number of
approaches have been used to decide the feasi-
bility of sets of inegualities {2,7,8,14,21],
ranging from goal-driven rewriting mechanisms
[25] to the powerful simplex techniques [7] of

linear programming,

The method presented here has the general-
ity of the full-scale techniques without sacri-
fice of speed on the rather trivial problems
one encounters most often, It builds on V.
Pratt's observation [18,16] that most of the
inequalities that arise from verification condi-
tions are of the form x sy + ¢, where % and Y
are variaples and ¢ is a constant. Pratt showed
that a conjunction of such inequalities can be
decided quickly by examining the loops of a
graph constructed ¢rom the inequalities of the
conjunction, We generalize this approach, first
“to inequalities with no more than two variables

and with arbitrary coefficients, and then to

Shostak
SRI International
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arbitrary linear inequalities, Our generaliza-
tion reduces to Prart's test for inputs having

the simple structure he describes.

The discussion is presented ir six sections,
Sections 2 and 3 are concerned with preliminary
definitions and with a statement of the method
for inequalities with two variavles and arbi-
trary coefficients. Section 4 discusses issues
of complexity and usefulness for integer problems,
and relates the method to Pratt's. Sections 5
and 6 deal with the extension of the method to
sets having strict inequalities and to sets with

arbitrary linear inequalities, The last sectionm

presents a proof of the theorem that underlies the

method,

2, Definitions

Let S5 be a set of linear inequalities each
of whose members can be written in the form
ax + by £ ¢, where X, ¥y are real variables and a,
b, ¢ are reals, Without loss of generality, we
require that all variables appearing in $ cther
than a special variable vp, called the zero vavi-
able, have nonzero coefficients. We also assumé

that v, appears only with coefficient zero.

Construct an undirected multi-graph G from S
as follows, Give g a vertex for each variable
oceurring in § and an edge for each inequality,

Let the edge associated with an inequality

ax + by £ ¢ connect the vertex for ® with the wver-

tex for y. Label each vertex with its associated
variable* and each edge with its associated ine-

quality, G is said to be the graph for 5.

This work was supported by RSF, ATOSR,
and RADC.

x
1n what follows, it is notatiomally convenient
to write v for both the yvariable v and the ver-
rex associated with that variable.




Now let P be & path through G, given by a

sequence Vi, Vou.veV o of vertices and a se-
quence el, LPSTERTLN of edges, n = 1, The triple

sequence for P is given by:

(ali bl' C1>’ (321 b2: CZ)""'(an’ bn' cn3
where for each i, 1 1 = n, agvy + byviyy s ¢y
is the inequality labeling ei.* P is admissible
if, for 1 s i Sn -1, by and a5, have the oppo-
site signs; i.e., one is strictly positive and

the other is negative,

Intuitively, admissible paths correspond
to sequences of inequalities that form transi-
tivity chains, For example, the sequence x =y,
¥y 52, 2 £3 gives rise to an admissible path,

as does
2% = 3y = 4, 2y 24 -z, =2 2 X .,
Note that the sequence:
XSy,y=sgz, 2=5¢

cannot label an admissible path, since the coef-

ficients of z have the wrong relative signs,

A path is a loop if its first and last ver-
tices are identical, A loop is gimple if its

intermediate vertices are distinect.

Note that the reverse of an admissible loop
is always admissible, and that the eyclic permuta-
tions of a loop P are admissible if and only if
aj and b, are of opposite sign, vhere
{ayy Byy ©1)e..{8,, by, cp) is the triple sequence
for P, In this case, we say P is permutable,

Note also that, since v appears in 5 only with
coefficient 0, no admissible loop with intial

vercex v, is permutable,

Now define, for & given admissible path F,
the residue imequality of P as the inequality

*
In the case where vy and vy happen to be iden-

* tical (i.e,, ey is a selftloop), an arbitrary
choice is made as to the ordering of the first
two components of the associated triple.

g2

obtained from P by applying transitivity to the
inequalities labeling its edges. For example,

if the fnequalities along P are
xs2y+1, ys2-3, 22w ,
we have:

x s 2y +1 €2(2 - 3z} + 1
£ 2{2 4+ 3w) 41 =6+

=

The residue ipequality of P is thus x « 6w = 5,

More formally, define the residue T, of P as

the triple (ap, by, cp} given by:

(aps bp) Cp) = (al: bl: Cl}

* (32, bz, 62) HoL L F (3np bn, Cn> ]
' cn) is the triple

¥

where {a;, b, c1>...(an b,
sequence for P and where % 1is the binary operation

on triples defined by:

{a, b, ¢} # fa', b', c') = {kaa', ~kbb',
k{ca' = c'b}),

a ]

fa*]

The residue ineguality of P is then given by

and k =

a x + bpy < €y where ¥ and y are the first and

P
last vertices, respectively, of ¥,

It is straightforward teo show that % is asso-
ciative, so that o is in fact uniquely defined.
The idea that the residue inequality of a path is
implied by the inequalities labeling that path is

expressed in the following lemma:

Lemma L. Any point (i.e,, assignment of reals
to variables) that satisfies cthe inequali-
ties labeling an admissible path F also

satisfies the residue inequality of F.

Pf. Straightforward by induction on the length
of P,




3, Procedure for Inequalities with Two varjables

In the case where P is a loop with initial

vertex, say, %, Lemma 1 asserts that any peint
satisfying the inequaticties along P must also

satisfy &p¥ + bpx = Cge 1f it happens that

ap + bp = 0 and Cp < 0, the residue inequality of
p is false, and we say that P is an infeasible
loop.

1t follows that a set S of inequalities is
unsatisfiable if the craph G for § has an infea-
sible loop. The converse, however, does not hold
in genetal.
for § = xSy, M +y sl
2 51 4w, 22 %}. Although § is unsatisfiable,

the graph has no infeasible loops, simple or

zZ %, WS 2,

otherwise.

XSy

w2

Vo

GRAPH G FORS= xSy 2x+ys1l,
z<mw<zz<w+L1>

FIGURE 1

The gist of our main theorem is that G can
be modified to obtain a graph G' that has an
infeasible simple leop if and only if 5 is
unsatisfiable:

Obtain a

Definition: Let G be the graph for 5.

closure G' of G by adding, for each simple
admissible loop P {(module permutation and

reversal) of G a new edge labelled with the

residue inequality of P,

Note that closures are mnot necessarily unique,
since the initial vertex of each permutable loop
can be chosen arbitrarily.

Theorem: § is unsatisfiable if and only if G’

has an infeasible simple loop.

Figure 1, for example shows the graph
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Figure 2 shows the unique closure of the
Note that the only loop of G
The

graph of Figure 1,
contributing an edge to G' is the Xyx loop.

VgR2Vy loop of G' is infeasible (having residue

{0, 0, -1/3)); hence the example §, according to

the theorem, must be vnsatisfiable,

w2

X=Xy

=12
FIGURE 2 CLOSURE OF G

We show later that any cyclic permutation
of an infeasible permutable loop is itself infea-
sible, and that the reverse of an infeasible loop
is also infeasible, We thus have the following

decision procedure for satisfiability of 5:

(1) The simple admissible loops of G are
enumerated modulo cyclic permutation
and reversal, and their residues are
computed, If amy loops are found to

be infeasible, 5 is unsatisfiable.

(2) Otherwise, the closure of G is formed
by adding a new edge for each residue
inéquality. The residues of all newly
formed simple admissible loops are mow
1f any are found to be infeaz-

Qtherwise S

computed,
sible, S is unsatisfiable.

has solutions.

Note that this procedure, as stated, does
not actually construct a solution Lf 5 is feasi-
ble, The proof of the main theorem, given in Sec-
tion 7, provides such a construction, Note alseo
that the new admissible loops formed in {2) must

have initial vertex Vo.




4, Efficiency and Other Issues

Any implementation of the procedure must, of
course, incorporate some means of generating the
simple loops of a graph. For this purpose, sev-
eral algoriths exist {Johnson [13], Read and
Tarjan {19), Szwarcfiter and Laver [23]) that
operate in time order £|Vi + ]El), and space order
lV] + fE!, where £ is the number of loops gener-
ated. These algorithms are easily modified to
generate only admissible loops without adversely
affecting efficiency, Since each loop has léngth
on the order of EV!, these algorithms require lit-
tle more time than that needed for output, A
graph may, of course, have quite a few simple
loops - exponentially many (in EEJ), in fact, in
the worst case. One can show that the procedure
we have described, like the simplex method, exhib-

its exponential worst-case asymptotic behavior,

In practice, however, one does not encounter
such behavior, The sets of inequalities that
arise from verification conditionms usually have
the form of transitivity chains, The correspond-
ing graphs are treelike, seldom having more than
a few loops., Most of the loops that do occur are
2-1oops, which are easily tested at the time the

graph is constructed,

V, Pratt [18] has noted that these sets
often fall within what he has termed gepavation
theory, All the inequalities of such sets are
of the form x sy + ¢. The residue of a loop
whose labeling inequalities are of this form is
given by one of {1, -1, m), (-1, 1, m), where m
is the sum of the constants ¢ arcund the loop.
The graph for a set 5 in separation theory is
thus its own closure, so the main theorem of the
last section reduces, in this case, to Pratt's
observation that such a set § is infeasible if
and only if the sum of the constants around scme
simple loop is negative, Pratt notes that this
condition can be tested in order (fvj + fEI)3
time by taking a max/+ transitive closure of the
incidence matrix of the graph., In practice, how-

" ever, it may be more efficient to generate loops

using one of the algorithms mentioned earlier.
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Note that a set o} inequalities in separation
theory with integer constants is integer feasible
1f and only if it is real feasible, While the
main theorem therefore decides inteper feasibility
in this case, it cannot decide integer feasibility
in general, 1t has been observed [21}, however,
that the transformations Bledsoe [3] describes
for reducing formulas in integer arithmetic to
sets of inequalities tends to produce sets that

are integer feasible if and only if they are real

‘feasible., The main theorem thus provides a use-

ful, but not complete, test for integer

feasibility,

5, Strict Inequalities

The procedure is trivially generalized to
handle strict imequalities (i,e., inequalities of
the form ax + by < c)}. Let an admissible loop be
strict if one or more of its edges is labeled
with a strict inequality. A strict loop P with
residue (ap, by, cp} is infeasible if ap + by = 0
and Cp <, If the definition of ¢lesure is now
modified in such a way that new edges arising
from strict loops are labeled with strict inequal-

ities, the main theorem still holds,

6. Extension to Arbitrary Sets of Inequalities
The method can be further generalized to sets
of inegualities with arbitrary coefficients and

arbitrary numbers of variables.

The basic idea is illustrated by the follow-
ing example, Consider the set

S=f{xsy, ysz, zsy-x+1,x2 23

Note that the inequality z Sy - x + 1 has three
variables, As shown in Figure 3, we choose twe
of the three (say z and y) as the endpeints of
the edge corresponding to this inequality in the
graph G for 5, The term (-x + 1) becomes the
"constant" of this inequality. The residue of
the only simple loop (y 2 y) is given by

{1, =1, @) * (1, -1, -x + 1)




and {s computed "gymbolically"” to obtain

{1, -1, -x + 1) HNote that this loop is infeasi-

ble unless -x + 1 2 0, 1f the residve inequality
<% + 1 2 0 is now added to the graph, an infeasi-

ble simple loop (voxvo) results, thus making 3

unsatisfiable,
zsy-x+1
2<x X<y
O O 2
Ve x v
]

FIGURE 3 GRAPHG FOR x <y y<z
zey-xt+t1Lx22

We now describe the procedure for an arbi-
trary set 5. We assume that the variables of 5
other than Vs are ordered in some way, Each
variable that is the lowest or second lowest
ranked variable in every inequality in which it
appears is said to be a primary variable., We
adopt the convention that the edge corresponding

to 2 given inequality is always attached to the
two nodes corresponding to its primary variables.
I1f it has only one primary variable, one end is
attached to vy, and if it has no primary vari-
ables, both ends are attached to vo. The proce=

dure is as follows:

(1) Compute a closure G' of the graph G
for § as usval, evaluating residues
Ygymbolically" as in the example, If
G' has an infeasible loop, terminate
recurning "unsatisfiable." Otherwise,
if all variables of S are primary, ter-

minate returning "satisfiable.”

(2) Otherwise, repeat the procedure using
the set of residue inequalities of G'

in place of 5.

¥ote that the procedure must terminate since the

number of mon-primary variables must decrease at

each iteration, One can prove &s an extension of
the main theorem that the general procedure is

complete as well as sound,

R, Tarjan* has observed that any set of ipe-
gqualities can be polynomially transformed to one
with no more than three variable per inequality
through the addition of new variables, The ine-
quality w+ x + ¥y + 2z < 1, for example, is
replaced by w + % S v, W ¥ X zv, v+ ¥y 4+2z <],
For sets with inequalities bhaving no more than
three variables, only two iterations of the pr--
cedure are ever required, There does not seem Lt
be any fast way to transform a set of inequalities'

to one having inequalities with no more than ¥

variables,

7. Proof of the Main Theorem

1t follows from Lemma 1 and from the defini-
tion of closure that a set 5 of inequalities
{(each having no more than two variables) is satis-
fiable if and only if S' is satisfiable, where 5!
jabels the edges of a closure of the graph fer 3.

1f we define a closed graph as one that is a ¢lz-

sure of itself, the main theorem can thus be

restated as follows:

Theorem: 1f G is a closed graph for 3, then S is
satisfiable if and only if G has no infeasi-

ble simple loop.

The proef of the theorem requires a number of
technical lemmas, Proofs are omitted for the more

trivial of these.

Motation: Where P and y are paths, let PQ denotz

the concatenation of P with Q. .

Lemma 2. If P and Q are admissible paths, thenm
PQ is admissible if and only if by and aQ

are of opposite sign,

Notation: Let T = {a, b, ¢; be a triple of reals.

Then T~ denotes the triple (b, a, ¢,

*
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Lemma 3. 1If Tl,T2 are triples, Tl * T2 =
(T, % T) .

Corollary 4, 1f Q is the reverse of an admis-

~

sible path P, then rp = Q"

Corollary 5. The reverse of an infeasidle loop
is itself infeasible.

Lemma &, Any cyclic permutation of an infeasi-

ble loop is infeasible,

w
Notation: Where u, v, w are reals, let u'<v

mean that u € v if w 2 0 and v > v if w < 0,

Definition! Where P is an admissible path, the

c
; . D
discriminant dP of P is given by Pa———

Note that an infeasible loop is one with

discriminant =,

Lemmaz 7. If PQ is an admissible loop from s to

Yo

iff 4 < d
P

a
, then PQ is infessible iff d_ >3 d
a P Q
"

Motation: In the following, let <a1, LI c1>,
(az, bZ’ cz), (83, b3, (:3), and
(ap, b , ¢ ¥, respectively, denote the resi-

dues of Pl' PZ’ P3, and P.

Lemma 8, If G is closed and has an infeasible

loop from v, to AT G has an infeasible

¢
simple loop.

Let P be a shortest infeasible loop from
Yo to Yo in 6. If P is simple, we are done,
Otherwise, since, by admissibility, the

intermediate vertices of P are distinct fiom

I

Vg P can be expressed P1P2P3, where P2 is
simple. We claim that P2 is also infeasible,

8¢

Suppose not, Then either a; + by = 0, and
¢2 20, or dp_ is finite. In the former case,

a, and b, have opposite signs, It follows from

2
Lemma 2 that by and ay must as well, hence PyP,

is admissible., Now since

rplPz = {0, b, cl) ® (az, b2' €yt
%2
= T;;T {0, -ble’ €8y = S0y s
we have!
R o Tt i W S
PlP2 -blb2 b2 b2 Pl
c
= gg + d '
2 Pl

22,4 34
5, "% 7 %y
Thus,
a,b
e +byd Slb.d
2 ey 27py

- < . o=
€y * bzdP1 bzdp3 {since ay and bz have opp

site signs)

o bzdPl < bzdp3 {since ¢y z 0}
b2
Ld < d
Py P,
B ay
“ dPl = dp3 {since bz and a, are of opposice
sign),

But then P1P3 is infeasible by Lemma 7, con~
tradicting our assumption that P is the shortest

such loop,




How if dp is finite, the closedness of G
2

provides that some vertex X o0 Py must be con-
nected to Yo via an edge E labeled ax $ ¢, where
¢/a is the discriminant of some cyclic permuta-

tion Pé (possibly = Pz) of Py, We now have three

cases:

Case 1, PZ is not permutable.

1 =
Then P2 = Pz, a a2 .
Lemma 2, a, and bz are of the same sign, Also,

+ b2, € = coy and by

a must be of this sign; hence both PlE and EP3
are admissible. An argument similar to the one
above gives that one or the other of PjE, EP3

must be infeasible, contradicting the shortness

of 7,

Case 11. P, is permutable and Pé =P,

In this case, we have from Lemma 2 that a; and
b2
well,
shows that one of PyPq, P4E, and EP4 must be
infeasible, again contradicting the shortness

of P2'

have opposite signs; hence by and a; do as

An argument similar to that given earlier

Case 1I1. P, is permutable and Pé $ P,

Let P, be the initial subpath of P, which ter-
minates at x, and let P be the final zubpath of
F, which originates at x (so that Py = PAPS)'

In this case, it can be shown that P1Py is admis-
sible, that one of PIPQE, EP5P3 is admissible,
and that one of these three paths must be infea-

sible, The shortness of P is thus once again
contradicted,
Theorem, Let G be a clesed graph for S. Then

S is satisfiable if and only if G has no

simple infeasible loop.

Pf, 1t follows from Lemma } that, if G has a

simple, infeasible loop, S must be unsa-
tisfiable. Conversely, Suppose G has no
such loop, We will show that 5 is satjs-

fiable by constructing a solution,

Let VisesnaVy be the variables of §
other than v,. We construct a sequence
GO’ Gl""’gr of reals and a sequence
Go, Gl,...,Gr of graphs inductively as

follows:

=0 and G0 = G,

{2) Suppose ;i and G; have been deter-
mined for 0 =1 < §j s,

supy = min{dp|? is an admissidle

{1y Let GO
Let

path from vy to v, in Gj-l and
> ;= maxi is an

a, ol inf; max,dp[P is an
admissible path from v, to vy in

. <0l P
Giay and bp 0r. {where it is
understood that mind = = and
maxy = -e). Then let Gi be any
value in the interval [infj, supyl,
(We show momentarily that

inf: < supi.) Let G.1 be obtained

3
from Gj-l by adding two new edges
from vy Lo Vo labeled vJ < vy and

and Gj > Gj, respectively,

To ensure that the Gj's and Gj's are
well defined, we must show that, for
1 =3 s'r, infJ < supj. It will then remain
to show that the vj's do indeed give a sole-

tion for S,

We need the following claim:

Claim. (i) For 1 £ j =1, inf} £ sup,
]
(ii) For 0 s } s 1, Cj has no
infeasible simple loops.
Pf, By induction on j.

Basis, j =0,
In this case, {i) holds vacvously, and

(1i) holds since GO = G,
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Induction Step, 0 < j =1, Vg to Vg we have -ax -b} + ¢ 20, Thus

For (i), suppose, te the contrary, . ax + by = ¢ as required.

. - . : . el
that mfj SUP 3 Then in GJ-l admis

sible paths Pl’ Py exist from vy to Vj

G.L.L.

and vj to vg, respectively, with
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Abstract: To choose their actions, reasoning programs must be
able to draw conclusions from hmited information and
subsequently revise Lheir beliefs when discoveries invahdate
previous assumptions. A truth maintenance system is a
probiem solver subsystem for performing these functions by
recording and maintaining the reasons for program belefs.
These recorded reasons are useful in constructing explanations
of program actions in “responsible” programs, and in guiding
the course of action of a problem solver. This paper describes
the structtre of a truth maintenance system, methods for
entoding control structures in patterns of reasons for beliefs,
and the method of dependency-directed backtracking.
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Introduction

Qne important problem faced by reasoning programs is the
need {o make decisions based on limited information. This
problem arises both in programs interacting with an external
environment and in contemplative programs searching a data
base for an answer to some question. There are two
consequences of this need to predict; the program must have
some way to make decisions based on limited information, and
the program must have some way to revise its beliefs if these
dectsions are found to be in error. The first of these abilities is
provided by utilizing epistemic classifications of possible
program beliefs so that conclusicns may be drawn from the
lack of belsef as well as from other beliefs. T he second ability
is in general a very complex problem for which no complete
solutions are known. {(See Quine and Uttian [1978) and
Rescher {1964) for surveys of the problem) However, the
simpler  problem of revising  beliefs based on limited
information 15 solvable by recording the reasons for each
program belief. These records can be used to find the set of
extant beliels by determining which beliefs have valid reasons.
These recorded reasons also are uselul in resolving conflicts
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that arise when limited knowledge gives rise to tncompatibie
conclusions, This paper describes a mechanization of these
abilities, embodied in a general-purpose problem solver
subsystem called & frnth mainfenance system,

A truth mamtenance system (TMS) records and
mautas "proofs” of program bebels. It manipulates two data
structures; medes, which represent beliefs, and fustificarions,
which represent reasons for behefs. The fundamental actions
the TMS can be called upon to perform are the creation of 2
new node, to which the problem solving program can attach
the statement of a belief, 2nd the addition of a new justification
to a node, to represent assertion of the belief associated with
the node by some rule or procedure in the problem solver.
The addiion of new justifications may invoke the automati
procedure of truth mainfenance to make any revisions necessary
in the set of beliefs. The TMS revises beliefs by using the
recorded justifications to compute non-circular proofs of beliefs
from basic hypotheses. These proofs distinguish one or more
justifscauons as the well-founded support for each believed
node, and are used during truth maintenance to determine the
set of behefs 1o update by finding those nodes whose
well-founded support depends on changed beliels, These
proofs allow another process, dependency-directed backtraching,
to resolve conflicts by tracing the well-founded suppons of
conflicting beliefs to remove one of the assumptions causing
the conflict and to make a record used to prevents simiar
future conflicts.

The TMS employs a speaial type of justification,
called a non-monotonic justification, to draw conclusions based
on hmited or incomplete knowledge. This type of justification
allows beliel in a node to be bated not enly on other beliefs, as
occurs in the standard forms of deduction and reasoning, but
also on lack of belef in certain nodes. For example, a node
N-1 representing a statement P might be justified on the basis
of a lack of belief in 3 node N-2 represenuing the behel ~P.
{Destinct nodes are used (o represent P and ~P.} In this case,
the TMS would have N-1 believed as long as N-2 was not
behieved, and we would call N-1 an assumption. {More
generally, by assumpuion we mean any node whose
well-founded support is 2 non-monotonic justification.)

As a small example, suppose an office scheduling
program is considering holding a meeting M on Wednesday.
To do this, the program assumes that the meeting is on
Wednesday. The data base of the program includes a rule
which draws the conclusion that due to regutar commitments,
any meeting on Wednesday must occur at £00 PM. However,
the fragment of the schedule for the week constructed so far
has something else scheduled for that ume aiready, and so
another rutle in the data base concludes that the day for the




meeting cannot be Wednesday. These beliefs might be

notated as follows:

Node  Statement Justification

N-1 DAY (M) = WEONESDAY 1SL O (N-2))

N-2 DAY (M) « HEONESDAY

-3 TIHE (1) = 13188 T{sL {R-37 N-1) (D)

As seen in the above notaton for justifications, each
jusufication consists of two tists. The meaning of the notation
is that the statement depends on each of the nodes in the first
list being believed, and on each of the nodes in the second list
not being believed. Sinte there i no known justification for
N-2. it 15 not believed. The justification for N-1 specifies that
1t depends on the lack of bebef in N-2, and so N-1 is believed.
The jusufication for N-3 shows that it 1s believed due to rule
R-37 acting on N-1. When the assumption N-1 is rejected by
some rule,

N-2 DAY t11) » HEONESDAY (5L (R-9 N-7 N-8) ()
where N-7 and N-8 represent the day and time of some other
engagement, the TMS will revise the beliefs o that N-1 and
N-3 are not believed,

Representation of Knowledge about Belief

A node may have several justifications, each of which
represents a different reason for beliel in the node. The node
1s beheved if at least one of these justifications is valid. The
conditions for validity of justifications are described below.
We say that a node which has 2 valid justification is in, and
that a node without @ vald justification is eul. The distinction
between in and eut is not that of true and false. The former
classification denotes conditions of knowledge about reasons for
belief: the existence or non-existence of valid reasons. True
and false, on the other hand, classify statements according to
truth value independent of any reasons for belief. In this way,
there can be four states of knowledge about 4 proposition P,
corresponding to the node representing P being in or ouf and
the node representing ~P being in or oul.

There are two basic forms of justifications. These
are inspired by the typical forms of arguments in natural
deduction inference systems. A sample proof in such a system
might be as follows:

Line Statement Justification Dependencies
i. ASB Premise {11
2. B2C Premise i21
3. A Hupotheslis {31
4, B 1,3 11,3}
5. c P 2.4 {1,2,3t
6. AC Discharge 3,5 11,21

Each step of the proof has a line number, a Statement, a
justification, and the set of hine numbers the statement depends
on. Premises and hypotheses depend on themselves, and other
lines depend on the set of premises and hypotheses derived
from their justifications. The above proof proves ASC from the
premises ASB and Bl by hypothesizing A and concluding C.
The assumption A is then discharged to provide the proof of
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AsC. There are two effects that justifications can have on the
set of dependencies in natural deduction systems; either the
justifications can sum the dependencies of the referenced lines
{as in line 4), or they can subtract the dependencies of some
lines from those of other lines (as in hne B). The two types of
justifications used In a TMS account for these effects on
dependencies. A suppori-list (SL) justification says thai the
justified node depends on a set of other nodes, and thus in
effect sums the dependencies of the referenced nodes. A
conditional-proof (CP) justification says that the node 1t
jusufies depends on the validity of a certain “hypotheucal
argument, and as in the example above, subtracts the
dependencies of some nodes (the hypotheses of the hypothetical
argument) from the dependencies of others {the conclusion of
the hypothetical argument). These two types of justificacions
can be used to construct a variety of forms of dependency
relationships.
The support-hist justification i3 of the form
(St <inlist> <ouflist>).
A SL-justification is vahd if each node in its inlist is in, and
each node ini its outlist is out. A Sl-justification can be used to
represent several types of deductions. When both the inlist
and outlist are empty, we say the justification forms a premise
justification. A premise Justification is aiways valid, and $o the
node it justiftes will always be believed. Normal deductions
are represented by support-iist justilications with empty outlists.
These represent monotonic deductions of the justified node
from belief in the nodes of the inlist. Assumplions are nodes
whose well-founded support is a suppori-list justification with a
nonempty ouflist. These justifications can be interpreted by
viewing the nodes of the inlist as comprising the reasons for
making the assumption; the nodes of the ourlist represent the
specific  incompletenesses of knowiedge authorizing the
assumption.
The conditional-proof justification takes the form
{CP <consequent> <inhypotheses> <oufhypotheses>).
A node justiied by such a justification represents an
implication, whose support s derived by a conditional proof
of the consequent node from the hypothesis nodes. A
Justification of this form is valid if the consequent node is in
whenever (a) each node of the inhypotheses is in and (bleach
node of the outhypotheses is out. Exceptin a few esoteric uses,
the set of ourhypotheses is emply, Standard conditional prools
in natural deduction systems specify a single set of hypotheses,
which correspond to our inhypotheses. The truth maintenance
system requires that the set of hypotheses be divided into two
disjoint subsets, since nodes may be derived both from some
nodes being in and other nodes being oul.

Encoding Control Structures in Sets of Justifications

The use of justificabons for recording normal, monRolomIC
deductions is straightforward, Non-monotonic justifications
augment the standard deductive relationships between beliefs
by allowing the encoding of control structures (patterns of
assumptions) into sets of justifications among nodes. The
virtue of such an encoding is that the choices underlying
problem solver actions become explicit, thus allowing careful
faiture analysis. In some cases, an automatic procedure like
dependency-directed backtracking can perform this failure
analysis and set the problem solver onto the next step of its




investigation. We describe in detail two important types of
controt structures; default assumptions and sets of alternatives.

Default Assumptions

One very common technique used in-problem soiving systems
is 1o specify & default choice for the value of some quantity.
This choice is made with the intent of overriding it if either a
good reason is found for using some other value, or if making
the default choice leads to an inconsistency. The assumption of
the day of the week for a meeting In the first example above is
such a default assumption.

In the case of 2 binary choice, a default assumption
tan be represented by believing a node if the node
representing its negation is ouf. When the defaull is chosen
from a set of alternatives, the following gensralization of the
binary case is used. Let {Fj, .., Fn} be the set of the nodes
which represent each of the possible vaiues of the choice. Let
G be a node which represents the reason for making the
default assumption, Then F; may be made the default choice
by providing it with the justification

{SL UG (Fyuvs FiyFpgees Fplh
If no information aboul the choice exists, there will be no
reasons for beleving any of the alternatives except F;. Thus
F; wilt be in and each of the other alternatives will be out. If
some other alternative receives a valid justification from other
sources, that alternative will become in. This will invalidate
the support of F;, and F; will become out. 1f a contradiction is
derived from F; the dependency-directed backtracking
mechanism will recognize that F; is an assumption by means of
its dependence on the other aiternatives being out, (See the
section  on  dependency-directed  backtracking for an
expianation of this) The result of backtracking may be to
justify one of the other alterhatives, say Fj causing F; to go
ouf. The justification for F ; will be of the ferm
{SL <various fhings> <remainderss)

where the remainders are the Fi's remaining after F; and Fy
are taken away. In effect, backtracking will cause the removal
of the default choice with the set of alternatives, and will set up
a pew default assumption structure from the remaining
alternatives. As a concrete example, our stheduling program
might defaull a meeting day as follows:

N-1 DAY (M) = HONDAY
N-2 DAY (1) = UEDNESQAY
N-3 DAY (H) = FRIDAY

{SL 1) (N-1 N-3))

in this example, Wednesday is assumed to be the day of the
meeting M, with Monday and Friday being the alternatives.
Wednesday will be the default choice untif a valid reason is
supplied for either Monday or Friday.
If the complete set of alternatives from which the
default assumption is to be chosen cannot be known in
advance but must be discovered piecemeal, a slightly different
structure is necessary.  This ability to extend the set of
alternatives Is necessary, for example, when the default is a
- number, due to the large set of possible alternatives. For cases
hke this the following structure may be used instead.
Retaining the above notation, ket ~#F; be a new node which
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will represent the negation of F;. We will arrange for F; to be
believed if ~F; cannot be proven, and will set up justfications
so that il F; is distinct from F, Fj wili imply ~F, This is
done by giving F; the justilication

{SL {G) {~F 1),
and by giving ~F; a justification of the form

(sl (FQ ()

for each alternative F; distinct from F,. As before, F; will be
assumed if no reasons for using any other alternative exsst.
Furthermore, new aliernatives can be added to the set simply
by giving ~F; a new justification corresponding to the new
alternative. This structure for default assumptions will behave
as did the fixed structure in the case of an unselecied
alternauve receiving independent support.  Backtracking,
however, has a different effect. 1f a contradiction is dertved
from the default assumption supported by the extensible
structure, ~F, will be justified so as to make F; become out. 1f
this happens, no alternative will be selected to take the place of
the default assumption. The extensible structure requires an
external mechanism to construct a new default assumption
whenever the current defauh is ruled out. For example, a
census program might make assumptions about the number of
children in a family as follows:

{st. () (N-2)]
(8L N-31 O}
(SL (N-4} (1)
{SL (N-5) O}
(8L (N-B) ()}

H-CHILOREN{F) = 2

N-1
N-2 H-CHILOREN(F) = 2

3 #-CHILDREN{F) = 8
4 H4-CHILDREN{F} = 1
-5 H-CHILDREN{F) = 3
B H-CHILDREN(F} = 4

With this system of justifications, N-1 would be believed
because no different number of children is known. If it turns
out that the family has 5 chifdren, a new statement would have
to be made, along with a new justification of N-2 in terms of
this new statement.

Sets of Alternatives

The defaull assumption structures allow 3 choice from a set of
aliernatives, but do not specify the order in which new
alternatives are to be tried if the initial choice is wrong. Such
advice sometimes is a linear ordering on the set of alternatives.
Linearly ordered sets of alternatives are useful whenever
heursstic information is availabie for making a choice such as
the state of a transistor or the day of the week for a meeting.

If it js certain that rejected alternatives are rejected
permanently and will never again be believed, the linear
ordering on the set of alternatives can be specified by a
controlled sequence of defsult assumptions. This can be
implemented in a ladder-like structure of justifications by
Jjustifying each F; with

(SL (G ~Fp g} (=F ),
where G s the reason for the set of aiternatives. The first
allernative Fy will be selected initially. As each allernatives is
ruled out through its negation being justfied, the next




alternative n the List will be assumed. For example, we might
have:

N-i DAY (H)} » HEONESDAY {SL (} {N-21)
N-2 DAY (H1} » WEDNESDAY
N-3 DAY {H) = THURSDAY (5L [N-2F (N-4})
N-& DAY {M) » TRURSOAY
N-5 DAY (1} = TUESOAY ISL (N-4) 1))
This would guide the choice of day for the meeting M to
Wednesday, Thursday and Tuesday, In that order.

it previously  rejecied alternatives can  be
independently rejustilied (say by special case rules correcting a
choice made by the backtracking system), a more complicated
structure 1s necessary, Such a set of alternatives <an be
described by the following justifications. For each aliernative
A;. three niew nodes should be created. These new nodes are
PA; {meaning "4; is 2 possible alternative™), NS 4; (meaning
“A; 15 not the selecied alternative”), and ROA; (meaning “4; is
a ruled-out alternative™. Each PA; should be justified with
the reason for including A; in the set of aliernatives. Each
ROA; is left unjusufied. Each 4; and NS4; should be given

justifications as follows:

Ag (SL (PA; NSAp ..o NSALj} (ROAD)
NSAgz 15L 0 (PAY)
(5t (ROAD (1)

Here the justification for A; means that A is an alternative, no
better aliernative is selected, and A is not ruled out. The
justification for NS4; means that either A; is not a valid
alternative, or A; is ruled out. With this structure, processes
can independently rule in or rule out an alternative by
Justifying  the  appropriate  allernative node  or
ruled-out-alternative node. '

This structure is also extensible. New alternatives
may be added simply by construcing the appropriate
justifications as above. These additions are restricted to
appearing at the end of the order. That is, new alternatives
cannot be sphiced into the linear order between two previously
inserted alternatives.

Dependency-Directed Backtracking

Making assumptions admits the possibitity of making errors.
When a contradiction or other inconsistent state of the data
bate occurs, the TMS employs a process called
dependency-directed backiracking to find and remove incorrect
assumptions so a3 lo restore consistency. There are several
steps involved in dependency-directed backtracking, but first
the inconsistency must somehow be signatied fo the TMS, as
there {5 no built-in notion of inconsistency. This signailing
consists of nforming the TMS5 that a node represents an
ineonsistency, With this knowledge, the TMS will try to. restore
consistency whenever the node comes in by rejecting enough
assumptions to force the node ouf.  Any node may be marked
. for such treatment. A node so marked is calied a contradiction.
The steps of dependency-directed backtracking are as

foliows. First, the well-founded support of the contradiction
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node is traced backwards to find the set of assumptions {nodes
with a non-monotomic justification s their well-founded
support) underlying the contradiction. Behel in at least one of
these assumptions must  be retracted to remove the
contradiction. This 15 done by creating a new justification for
one of the out nodes underlying one of the assumptions. Since
the backtracker may be mistaken In ils assignment of blame to
that assumption, the justification used to retract the asgsumption
must indicate the alternatives that were avallable but not
utilized by the backiracker, Thus the new justification
includes (a) the reason why the contradiction occurred and (b}
the other assumptions involved. Thus the second step of the
backtracking process 15 o construct 3 node recording the
reason why the tontradiction occurred, and the third step 1s to
use this node and the other assumplions sn yustfying an out
node supporting the assumption selected for removal.

In more detail, the first step of the backiracking
process traces backwards through the well-founded support of
the contradiction node 1o collect the set of “maximal”
assumptions supporting the contradiction. Not all assumptions
found by tracing the weil-founded support are used; fnstead,
only those assumptions Which do not support other
assumptions underlying the contradiction as well. That 1, the
well-founded  support  relationships induce @ natural
partial-ordering on nodes, where one node is said to be “lower”
than a second node if the first occurs in the second's
well-founded support. The maximal assumptions are then
those assumptions which are maximal in this partial order.
Only this “front line” of assumplions is used because if the
reason for revoking a lower-level assumption involves a
higher-level assumption, then the removal of the lower-level
assumption would cause truth maintenance to remove the
higher-level assumption that it supports, 30 the reason for
removing the lower-fevel assumption would not hold up. This
reflects the fact that there may not be encugh information to
definitely rule out a lower-leyel assumption.

The second step summarizes the reason for the
contradiction in terms of the set of selected assumptions, Let
S={d) .. Apl indicate the ¢et of inconsistent assumptions.
The backtracker then creates a node cafled 2 nogood, a new
node signifying that § s inconsistent. Since contradiction
nodes really represent the false statement, the nogood node <an
be taken to represent

A nn Ay > faise,
or alternatively,
4} ”{A,A...A AR)
S is recorded as the nogood-set of the nogood. This meaning
for the nogood node is produced by jusiifying it with the
conditional proof of the contradiction node relative to the
assumption nodes, that 13, with the Justification
(2 {CP <contradiction nade> § {1}
In this way, the inconsistency of the set of assumptions will be
remembered even afier the contradiction has been resolved by
the retraction of some hypothesis.

The final step is selecting an assumption A; (the
“culprit™} from § and justifying one of the ouf nodes listed in
its well-founded supporung jusufication. (if these underlying
ot nodes are thought of as “denials” of the assumption, then
this step is much like reasoning by reductio ad absurdum) Let
NG be the nogood, and lel the inconsistent assumptions be




Apo Ay Let Dy, .., Dy be the out nodes appearing in the
Justification whach supports belief in the assumption 4;. This
justificatton for the assumption can be invalidated by justifying
D with the justification

(3 (SLUANG Ap ... Appdiy.oe AQ) Dy ou D))
Tius justifcation is valid whenever the nogood and other
assumptions are beheved and the orther “denials”™ of the culprin
ate not believed. If the chowce of culprit was in error, then
anather contradiction will occur in the future involving Dy,
and by this Justfication will be fed to suspect the remaining
assumptions, as well as Dy of there are any other ouf nodes
isted an dvs justification.  1f, by means of other previously
exisung  justifications, the current contradiction s still in
following the addition of this justification, backtracking Is
repcated, Presumably the new invocation of the backtracking
process will fmd that the previous culprit is no longer an
assumption.  Backtracking halts when the contradiction
becomes out, or when no assumptions can be found underlying
the contradiction.

As an example, consider a program scheduling a
meeting, preferably at 10 AM in either room 813 or 80i. This
might be represented as:

1 TIHE (M} » 1089 (sL O (N-2))
2 TIHE{H) = 1888
-3 ROOM{M} « 813 {sL {} {N-4)

4 ROOMIMY « 8R1 -

With these justifications, N-1 and N-3 are in, and the other
two nodes are ouf, |f some previously scheduled meeting exists,
it might tause this combination of time and room for the
meeting to be ruled out by means of a contradiction,

N-5 CONTRADICTION {SL (H-1 N-3) (0}
The dependency-directed backtracking system then traces the
well-founded support of the contradiction to find that it
depends on two assumptions, N-1 and N-3, both of which are
maxtmal,

{CP N-5 (N-1 N-3) ()2

& NOGOOD N-1 N-3
4 (5L {N-B N-1} (})

N-
N=- ROGH{H) = 881
A nogood node is created which means, in accordance with
form (I} above,

~(TIME(H) = 1888 A RODH{H) = 813)
and this nogood is given a justification corresponding to form
(2) above. The assumption N-3 is selected arbitrarily as the
culprit, and is rejected by providing its only out supporting
node, N-4, with a justification of the form (3) above. Following
this, N-1, N-4, and N-6 are in, and N-2, N-3, and N-5 are ouf.
N-6, the nogood node, has an always-valid CP-justification
since the contradiction node N-5 depends directly on the two
assumptions N-1 and N-3 without any additional beliefs
interveming. I some further consideration determines that
room 80 cannot be used after all, another contradiction node
could be created to force a different choice.
(st (N-4) (1)
[CPN-7 (N-}) O}
{SL {N-8} (1)

N-7 CONTRADICTION
N-8 NOGOOD N-1
N-2 TIHE{H) » 1888
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Tracang backwards from N-7 through N-4, N-B, and N-1, the -

backtracker Ninds that the contradicuon depends on only one
assumption, N-. - The nogood node N-B8 13 created and
Jjustilied with a CP-justification which 10 effect 18 equivalent 1o
the SL-justification
(SL (H-6} ()},

since the nogood N-B contributes to the contradicion but does
not itscif depend on the assumption H-1. The revocation of
the assumption N-1 removes N-5, the previous objection to the
¢hoice of room. so at the close of this bu of decision making
N-2,N-3,N-6, and N-§ are in, and N-1, N-&, N-5, and N-7 are
out.

There are a number of variations on this particular
scheme for dependency-directed backtracking.  All of these
varrations are great improvements over the chronological
backtracking  systems  used in  classical  systems  like
MICRO-PLANNER and many early theorem provers. The
improvements sterm from the non-chronological nature of
dependency-directed  backtracking, 1n which the support
relationships rather than the temporal orderings determine the
choices responsible for an ervor, Another improvement is that
the cause of the contradiction is summarized viz a2 nogood
node. This summarnzation keeps the systemn from making the
same mistake m the future. Stallman and Sussman (1977} have
shown that these two smprovements lead to enormous gains in
efficiency.

Truth Maintenance Mechanisins

Consider the statements:

F {e {+ X Y] &)
G {w X1}
H (=Y 33,

If both F and G are in, then belief in 4 can be justfied by
(SL {F G} O).
This justification will cause H to become in, If G subsequently
becomes out due to changing hypotheses, and if H becomes in
by some other justification, then G can be justified by
(SL (F H) O).

Suppose the justification supporting belief in 4 then becomes
invahd, thus causing the TMS to reassess the grounds for
beief 1n H. H the decision to believe a node is based on a
simple evaluation of each of the justifications of the node, then
both G and H will be left in, since the two ustifications form
circuiar proofs for G and H in terms of each other. These
justifications are mutually satisfactory i F, G and H are in.
This example points oul one of the major concernt in truth
maintenance processing: the avoidance of using circutar proofs
to support beliefs. This 1s the reason why well-founded
support is maiptained.

Essentially three different kinds of circularities can
arise in purported proofs. The fust and most common s a
circularity tn which all nodes involved can, consistently with
their justifrcations, be taken to be our. Such cireularittes arise
routinely through equivalences and simultaneous constraints, in
which many behefs may be mutually supporting without any of
the beliefs having non-circular reasons for being believed.




The above aigebra example falls into this class of circularity.

The second type of circularity is one in which at Jeast
one of the nodes involved must be fn. An example is that of
wo nodes F and G, such that F has the justification

(st ) (G}),
and G has the justification

{SL €} (FiL
Here either F must be in and G ouf, or G must be in'and F
owt. This type of circularity arises in defining some sets of
alternatives. Frequently other ordered alternative structures
can be used to avoid such circularities.

The third form of circularity which can arise is the
unsatisfiable circularity.  In this type of circularity, no
asuignment of in or out to nodes is consistent with their
Justificaons.  An example of such a circularlty is 3 node F
with the justification

(sL 0 (A1}

This justufication implies that F 13 in if and only if F is out.
Unsatisfiable  aircularities  are  bugs.  indicating 2
mysorganization of the knowledge of the program using the
truth mamtenance system. Unsatisflable circularities are
violations of the semantics of in and ouf, which can be
interpreted as meaning that the lack of reasons for beliel in a
node is equivalent (o the existence of reasons for beliefl in the
node. {It has been my experience that such circularities are
most commeonly caused by confusing the concepts of in and ouf
with those of frire and false. For inslance, the above example
could be produced by this misinterprezation as an attempt to
assume belief in the node F by giving it the justification
{sL (+ {F)))

’ In addition to the problems caused by circular proafs,
the TMS5 must also handle problems introduced by
conditionai-proof justifications. There are two parts to the
implemented approach. The validity of CP-justifications is
checkabie only in case the consequent and (nhypotheses are in
and the outhypotheses are oul. This is a rare circumstance,
however, particularly in the case of backtricking when a
nogood node justified with a CP-justification is used to force
onf the contradiction node appearing as the consequent of the
CP-justificauion. The TMS$ thus takes the epportunistic and
incomplete strategy of using CP-justifications to compute
Skejustifications which are egquivalent in terms of the
dependencies they specify, but which can be checked for
vahdity at any time. Specifically, whenever the
CP-jusufication is found to be vahd, an equivaient
SL-justification  is computed by tracing through the
well-founded support of the consequent node of the
CP-justification to find the “ront line” of nodes which are not
in turn supported by any of the in or ourhypotheses. This set
of nodes can be divided into the in nodes, which form the
inlist of the equivalent SL-justification. and the out nodes,
which form the outlist of the equivalent SL-justification. The
way these sets of nodes are computed from the weli-founded
support of the consequent of the CP-justification ensures that
the consequent will be in whenever the inhypotheses are in, the
outhypotheses are ou!, and the nodes of the equivalent
SL-justification respectively in and ouf.

The details of the truth maintenance mechanisms will
not be pursued here. Many details, along with an annotated
implementation, are presented in [Doyle 1978].

EE]

Discussion

Truth maintenance systems solve part of the belief revision
problem, and provide an associated mechanism for making
assumptions based on limited information. It has long been
recognized that making assumptions is 3 necessary part of Al
systems, and many sysiems have employed some mechanism for
this purpose. (For example, [Bobrow and Winograd 1972, de
Kleer et al. 1877, 1078, Hayes 1973, (977, McCarthy 1977,
McCarthy and Hayes 1969, McDermott 1974, Minsky 1962, 1975,
Reiter 1978, Roberts and Goldstein 1977, Sandewall 1972,
Sussman et al 1071}) Unfortunately, the related problem of
beliel revision recerved somewhat less study. Most work on
revising behiefs was done in the framework of backtracking
algorithms operating on rather simple systems of states and
actions. The more general probiem of revising beliefs based
on records of deductions has only been examined jn more
recent work. {(See [Cox and Pierzykowski 1976, Doyle 1978,
Fikes 1975, Hayes 1975, Katz and Manna 1976, Lalombe 1977,
London 1978, MeAtlester 1978, McDermott 1974, 1977, Nevins
1974, Srinivasan 1976, Stallman and Sussman 1877)) The
Iiterature of philosophy and logic contamns a large amount of
wark on the beliel revision problem (see {Quine and Ulhan
1978, Rescher 1954]), as well as some work on formal methods
for making decisions based on limited Information. The
history of attempts at formalizing the Al methods for making
assumptions is surveyed by McDermott and Doyle {1978), who
also present a mathematical semantics for what is termed
non-monotonic logic.

Truth maintenance systems fend themseives to other
uses as well as behef revision and making assumptions.
Generating explanations is an ymmediate applicauon.  The
recorded reasons for behefs can form the basis of an
explanation system in “responsible” programs {Sussman.
personal communication] which can justfy their actions and
beliefs to a user. A crucial aspect of the problem of
explanation is that unless care I taken in structuring the
knowledge of the program, the explanations will contain
information at many levels of detail, thus making the
explanation incomprehensible. It is thus important to try to
structure the use of a3 truth maintenance system so that levels of
detait in explanations are separated automatically. Doyle (1978}
describes 3 method by which conditional proofs are used to
factor unwanted low-level details from explanations. When
such factoring is done at each level, a hierarchical structure
emerges 1n explanations.

Truth mamtenance systems can be applied to the
problem of controliing problem soivers in several ways. The
simplest method is that of using an automatic procedure like
dependency-direcied backtracking for guiding the search.
More sophisticated methods can be designed which represent
contro} decisions as explicit program beliels, and separate the
yeasons for control decisions from the reasons for beliefs
derived in response to the control decisions. With such a
separation, careful failure and choice analysis routines can
examine the history of the problem solver, and much
Information can be salvaged from mustakes. (See [de Kleer et
al. 1977, Doyle forthcoming, Stallman and Sussman 1977))
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Explicit Control of Reasoning
In The Programmer’s Apprentice
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Abstract

This paper describes a  reasoning  system  called
REASON which is used as part of a larger program
understanding system. REASON's key features are: (I} Its
use of the Truth Maintenance System [Doyle, 1977) to
record and manipulate the justifications for its deductions,
(2) It use of non-monotome logic [Doyle and McDermott,
1978} and {3} A disaipline of explicitly recording control
information [DeK leer, et. al, 1977) in a form which may be
manipulated by the reasoning system itsell. 1n this paper
we present the basic formalisms of REASON and a
description of how these can be used to build more
ficxible versions of well known problem solving inechantsms
such as the comtexts of QA4 [Rulifson, el al, 1972] or
Conniver [McDermott, 1972}

Introduction

REASON is a deductive system used as the
reasoning component of the programmer’s apprentice system
[(Rich and Shrabe, 761 It is characterized by it's use of the
Truth Maintainence System {Doyle, 771 to mazintain a
netwark of logica! dependencies.

REASON s part of a “program understander’; it pot
only has the ability to show that a program Is "correct
but it can alse explain why the program is correct,
showing how the intended behavior of the whole program
results (rom the known {or assumed) behaviors of its parts.
A second and stronger feature of REASON's design is that
it is able to analyze the effect of 2 proposed change lo a
program, viewing the modification  as a perturbation,
rather than as a2 whole new program requiring a new
proof.

Finalty, REASON s intended to be an Advice Taker
{McCarthy, 1068] which can be given new strategies for
efficient deduction. To be effective such strategies must be
capable of reacting not only to the facts currently believed
to be true, but also to the lack of belief in_ other facts.
Such systems must understand advice such as “while doing
x don't use type y rules” which refer to the state of the
problem solver itself [McDermott, 1977

These criteria have led to a system in which not only
facts but also the reasons for their belief are explicitly
recorded. In addition, all goa! states and the reasons for
their existence are recorded within the same formalism.

This research was conducted at the Artificial Intelligence
Laboratory of the Massachusetts Institute of Technology.
. Support for the Laboratory’s artificial intelligence research
is provided in part by the Advanced Restarch Projects
Agency of the Department of Defense under Office of
Naval Research contract number N000I4-75-C-0643, and in
pirt by NSF grant MCSTI-04828.
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The Basic Formalism:
Facts, Rules, and Justifications

of the
begin by

variant
we

REASON 135 implemented in a
language AMORD [DeKleer, et al. 1977}
reviewing the basic concepts of this language.

Since REASON’s goal is not only to prove properties
of a program but to understand how these properties
follow from known or assumed properties of sub-modules,
Justifications are a crucal form of information in
REASQON. When an assertion is entered into REASON's

data base, it it always accompanied by a justification
explaining why the new assertion is beheved.  To make
this convenient, each assertion is asuighed a  unique

“fact-name”.  For example:

Assertion System-Sypplied-Fact-Neme
< xy) f-1
<y ) F-2

When REASON applies the transitivity rule to F-1 and F-2. it
enters the newly deduced fact using the ASSERT function:

(Assert {¢ X 1) (Tramsitrwvity Fo) F-2})

ASSERT takes two arguments: the new assertion to be added
to the data base and the justification [or the assertion; a
justification is a hist whose first element is a justification name
and whose remaining elements are the fact-names upon which
the new assertion depends.

One important  justification is PREMISE; premise
justifications invoive no supporting facts. A premise is a fact
which is believed unconditionally; belief in a premise does not
depend on the truth value of any other fact. The three facts
above might have been entered into the system as follows:

User Types System Supplied Factl-Keme

{Assert (< X Y) {Premrse}) F-1

(Assert (¢ ¥ I) (Premise}) F-2

(Assert (< X ZI) (Transitavaly F-1 F-2}} F-3
REASON makes deductions using rifes which constst of two
elements: a frigger set and 2 body. The trigger set is a Tist of
patterns each of which has two parts: a fact-name variabie and
an assertion pattern. The body is a LISP expression which is
evaluated in an environment in which the variables of the
patterns are bound to the objects which they matched. The
following is a fairly typical REASON rule:

{rute {{:r (Rest :tist-1 :h1st-2))
{:p (Member :Vist-2 :ob)-i}})
(assert (member :V}isi-1 soby-1)}(List-Membership :f :9}))




Variables are indicated by a leading colon (), the body Is the
assert statement, and the trigger sel is the hst:

(4:f (Rest :list-) :tast-2))
{:p (Member :1%st+2 :ob}-1}})

In these triggers, the leading single variable (I or g} is the
fact-name variable, the remaining parl of each trigger
(Rest ddist-] :hst-2) or (Member idist-2 :obj-I) } Is the assertion
pattern. A rule is applicable if all its patterns are matched by
facts which have currently valid justifications {see below). The
body 15 then executed in the environment of the match.

As each trigger is matched to an assertion, the faci-name
variable of that trigger is bound to the fact-name of the
matched assertion. This atlows the body of the rule to refer to
its triggering facts. In particular, assert statements in the body
of the rule may include a justification mentioning these facus.

Astertions have one of two statuses in REASON, they are
either in or ouf. A fact which is in is belleved to be true. An
assertion whose negation is in is believed to be false. If both
an assertion and its negation are in then the data base is
contradictory and corrective action Is required. If neither the
assertion nor its negation is fn, then the fact is simply
unknown.

assertion negated assertion meaning

in out assertion trye

oyl in assertion false

n n centradiction

avt out truth vsiue unknown

The meaming of jusufications such as the transitivity
justification shown above is that whenever F-l and F-2 are in
then F-3 should also be in. If for some reason either F-] or F-2
became out, then F-3 would lack support and would also
become ouf. The ining and outing of facts is managed by the
Truth Maintainence System [Doyle, 1978).

It i frequently necessary to assume that some fact holds
even though no reason exists for believing it. This Is often
done in hypothetical reasoning as when one proves that A
implies B by assuming A and deriving B. One assumes a fact
because there is no apparent reason not to believe it; thus, the
assumed fact is justified by making it depend on the ou¢ness of
its negation. This is done by the function ASSUME:

[Assume (HMade-of The-Moon Green-Cheese) (3411 F-23})

which states that the system will believe that the moon is made
of green cheese as long as it has no reason to believe that the
moon is not made of green cheese and as long as it believes
fact F-23. The function ASSUME builds a justifiction which
has two parts: A lTist of assertions upon whose inness the fact
depends and a list of assertions upon whese oufness the fact
depends. When the above ASSUME form is invoked it creates
the assertion:

“ (%ol [Hade-of The.Moon Green-Cheese}) F-1001

and then justifies its argument assertion by stating that it
depends on F-1001's being onf and on F-23's being in.
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f'-)ooz (Made-of The-Moon Green-Cheese} {3331 (F.233(F-1001))

where the first list in the justification i the jist of facts whose

:fnness supperts F-2 and the second st is the out lst

Whenever an asserion  changes ity status, the Truth
Maintenance system propagates the change until only
assertions with well-founded support rematned in.

A final type of jusuficaton arises n the proofs of
implcations.  As mentioned above, typucally one proves A
implies B by assuming A and deriving B.  However,
(implies A B) depends only on those facts whith were involved
in deriving B from A and which were nol themselves derived
from A. The system is instrucied to find these supporting facts
by the conditional proof justification:

(Assert {Implies A D} (Condrtional-Prool F.5 F-3)}

The first fact-name in a Conditional-Proof statement is the
consequent of the implication, the second fact-name is the
hypothesis of the conditional proof. When such a statement s
executed the TMS is invoked to examine the justifications
supporting the consequent F-5 and the antecedent F-2.

The imphcaton is supporied by the set of facts which
support F-5 but which do not include F-3 in their support.
The implication is given 2 justification inciuding exactly these
facts. This process 18 described in more detail in [Doyle, 1978)

We now turn to the issue of control within the reasoning
system.

Explicit Control
and The Task Network

The traditiona] weakness of automatic deduction systems 15
that they are prone to blind searches. Even large amounts of
overhead are justified If they can cut down the size of the

search space.

The approach we fallow here is that alt control of the
deductive process must be represented expliently in a form
which can be manipulated by the same mechanisms as those
which tonduct the logical deductive process itsell. The
ultimate goal motivating this discipline js the requirement that
the deductive apparatus be self conscious and ‘able to explain
what it is doing at any time. The system can then reason
about whether it ought to continue to pursue a particular task,
ar rather abandon it as hopeless or of too little imporiance to
command further resources and attention.

REASON organizes its operation around a data-structure
called the f{ask network [McDermou, 77 represented by
assertions in the same data base a5 are facts about the program
being analyzed. However, the control assertions in the data
base have a justification structure which outs them from the
data base once their usefulness has passed.

A simple example of the use of control asiertions in
consequent reasoning will clanfy this disciphne.  For any
particular goal there might be several different methods for
deriving the desired fact, each of which might create several




(conjunciive  of dispnctive) subgoals.  For example, 2
particular fact about a list might be dertved by backward
chaining though some implication, but It might also require a
prool by strurctural induction.

A goal 1s furst proposed as @ sub-goal of some higher Tevel
task; in REASON these higher level tasks are always sub-lasks
of the symbolic program evaluation. However, for simplicity
we will refer to this higher level task as “top-level”. The
creation of a sub-goal sumulates several actions. First
REASON assumes that the sub-goal is neither satisfied nor
refuted; it then asserts {in the data base) that methods are
needed for the sub-goal. This request for methods Is justified
by a dependency pointing back to the assumption that the goal
s neither satisfied nor refuted. If the particular goai is of a
type for which a method is known, then the rule capturing this
knowledpe triggers and asserls the proposal. The proposal 1s
ustifted with a dependency pointing to the statement which
fssued the request for methods. The system must now make 2
conscious choice of which {if any) methods to accept; we shalt
discuss this below.

REASON accepts a method proposat by making 3 $how
assertion, triggering the rule which does the acuat work of the
method. I the desired goal is deduced, a rule is triggered and
asserts that the goal is satisfied. 1f the negation of the goal is
ever deduced, a second rule is triggered, and asserts that the
goat has been refuted. Either of these events will cause the
imtial assumption that the goal was neither satisfied nor
refuted to go oul, taking with it alt of the dependent control
assertions.

The underlying mechanisms of the reasoning system
establish 2 well-defined point at which the system may chose
which method(s} o pursue. REASON is a queue based system.
the main loop of which cansists of finding pairs of rules and

matching facts which are added to the process queue. At each
yeration one such pair i processed, potentially crealing new
facts, rules and matches. However, since methods must be
accepted before they may act, the queue runs out of matching
pairs relatively often. This is the occasion for methods to be
chosen. A procedure calted the acceplor is called to make the
the chaoice.

“To iHustrate this discipline, suppose we want lo prove P
and we have (Implies Q P), (implies R Q) and R. We start by
stating that P is a sub-goal of “top-level” (or some more worthy
rask):

£-1 {implies O P) [Premise)
F-2 {impties R Q} {Premise}
F-3 R (Premise)}
Fod {Subpoal F {lop-tevel}) {Premise)

Since a sub-goal statement has been asserted, the system
makes the assumption that the sub-goal has as yel been neither
satisfied nor refuted, Also it creates a goal statement for the

_newly created goal and justifies  this staternent  with 2
dependency on the assumption:
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R-2 {rute {{:1 {hot BIY)

{Assumptaon LI(F-6))

t}; nole lach of justificeiion
{Arsumpiren () (7-8)}

(}: note tack of justafteation
{Sub-goal F-5 F-1}

f-5 (Kot {Satrsfred F-9)}
F-6 {Satrsired £.9)

Fo? {Hot {Refuted F-a})
F-8 {Refuted £-8)

f-9 {Gosl P {top-tevel}}

in addition a rule 3 created to watch for the goal becoming
true. When triggered, the rule asserts that the goal s satisfied
A second rule for refutation is also created.

R-1 {Rute {{:f P}} tsat-Rute £-9)

(Asseri {Satistred F-9)
[Satrsfaction 11}
{Ref-Rule F-9)

{Assert {Refuted F-9)
(Refutatyon A1)}

A
The assertion of the goal statement aho leads to a request for
methods to achieve the goal

F-10 {Hethods-Heeded {Gos) P (topievel})) {Meth-gost F-9}

Now the various method proposers come into play. One
obvious method 5 backward chaining, ie finding an
impiication whose consequence is the desired gosl, and then
posing the antecedent of the implication as # sub-goat. This
would result in the following:

Fe11 {Method {Gosl P {top-tevel)) (8C-Meth F-10 F-1}
{Batkward-Chain

{Impires Q@ P1})

The queue now rTuns out since there are no other acyons
possible. At this point the acceptor procedure is invoked.
Seeing only one method available, the acceptor makes the
abvious choice, accepting the method proposed 10 F-il.

F-12 {Shov {Goal P {top-levell}} {Accepior F-11)

by (Backward-Chain {implies Q PY1}

The show assertion triggers the rule which does the actual
work of backward chaimng:

R+10  {Rule
({:f {show (Gosl iconsequent sptack)
by {batkward-chrin
{Implres rantecedent reonsequent}) )}
{masert {subges) santecedent {:consequent . sptack))
{be-sub-goat :f})
{Rute {(:9 {Implies .antecedent zcomaequent}}
{:b rantecedent})
{Asyert :consequent {Hodus-penens 1@ hi)i)

Thus, we now get 1 new sub-goal assertion as well as 2
eodus-ponens rule:

{bc-sub-poal F-12)
{sub-rule F-10 R-10}

F-13 {Subgoal Q (P top-ievell)
R-11 (Rule {{:g {Impires QP
{:h @)}
{Assert P {Hodus-ponens 39 1.3)3]




The creation of the new sub-goal Q triggers off a series of
assertions similar to those triggered by the originai sub-goal P.
We get the lollowing:

F-14 (Mot (Satisfred F-18)) {Assumption ( }{F-15})
F-15 (Satigfred .18}
Feld (Hot {Refuled F-18})
F-17 {Refuted 7-18}

F-18 (Goat Q@ (P tap-level})

{)

(Assumptyon {) (F-17))
()

(Sub-Goxt .14 F-18)

R-3 (Rule {[:f O}}
{Assert {Satisfred F.18)
(Satysfactron 1))}
R-4 (rute {{:f {not Q}}}
(Assert (Refuted £-18}
{ReTutation :f1})
F-1% (Methods-Keeded
(Goat O {P top-level})}
F+20 {Method
{Goald © (P top-tevel)}
{Backward-Chain (Implies R 0}})

{Sat-ges) F-18}
{Ref-Goal F-18)

(Meth-gon) F-18)

(BC-Keth F-1% F-2)

The acceptor is now invoked and Method F-20 is accepted.

Fe2k (Show (Goal Q (P top-level)} (Acceptor F-20)

by {Backward-chain (Implies R Q}}}

which in turn triggers the rule for backward chaining.
Resuiting in:

{be-sub-gost F-21)
{sub-rulie £-21 R-0)

Fe22 {subgos) R {Q P top-level})
R-5 (Rule ((:g {Implies R Q}}
{:h R)}

{Assert Q {Modus-ponens :g :h)))
At this point the necessary facts become available allowing rule
R-5 10 run on the fact F-3. We obtain:

F-23 0 {Hodus-Ponens F-3 F.2)

However, Q now tnggers the rule R-3 which |5 watching for
an asserion satislying the goal F-18 (Goal Q (P top-level),
This causes a justification to be added to the “satisfied
assertion” F-15 which was created when the goal F-18 was
created:

F-15 {Satisfied F-18) {Satisfaction F.23)

However, F-14 (Not (Satisfied F-18)) was justified by an
assurnption dependency on the sufness of F-15, which now has
a vakid justification and is, therefore, in. Thus, F-14 5 made
out by the truth maintainence system:

F-la (Mot (Setisfied F.18)) {}
F-1% (Satisfied .18} {Satisfaction F.23)

Furthermore, F-14 was the only support for the goal assertion
and Its dependent method-needed, method and show assertions.
A quick inspection of the justifications will show that the
fotlowing support structure exists at this lime:

Feld o) F-18 +> F219 =) Fo20 -3 Fo2) =) Fo22 -3 R-§

-y R-3
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Thus, when F-14 goes suf, so do all of these assertions. Notice,
however, that these are all control assertions. The fac
assertion F-23 Q depends only on F-3 and F-2; it stays in.
Furthermore, F-23 triggers the rule R-2 which represents the
modus-ponens deduction for Q and {Implies Q P). We obtain:

f.2a 4 {Modus-Ponens F-23 F-1)

As before, this trigpers a goal-satisfied rule, this time R-l for
the goal F-4.

F-6 {Satisfied F-8) {Satrsfactron F-2¢0)

which causes the not-satisfied assertion F-5 to go out. The
chain of dependencies causes assertions -3, F+10, F-ll, F-12, F-13
and rules R-l, R-2 1o go out as wetl. This leaves us with only
the following useflul assertions.

F-1  {lmplies Q P} tPremise}

F-2 {lImplies R Q) {Premise}

F.3 R {Premise}

Fd {Subgos! P {top-Tevel)] (Premyse}

F-6 {Salrsfied F-8) [Setasfactron F-24)
F-15 (Setisfrec F-18) (Satisfactron F-23)
F-23 Q {Mecdus-Ponens £-3 F-2}
F-22 P {Hodus-Ponens F-23 §-1)

Of course, this entire deduction might have been achieved
more easily by a simple forward chaining rule for modus
ponens. However, we have gone through this detzil to
iflustrate the steps of the protocol. In general, uncontrolled
forward chaining is a bad strategy since it allows deductions te
lead into endiess loops. What is important o notice at this
stage is that we have used the dependencies to achjeve the
effect of contexts as used in Conniver {McDermott, 1972] or
QA4 [Rulifson, [972]) without their inflexibility. When we now
fonger need a control environment we feave it by oufing certain
facts; however, we are free to inlermingle any set of control
assertions we please, pursuing goals in any order and sharing
Information learned in the pursuit of one goal with any routine
that might profit from this information. There is, however, a
virue to the context mechanism: it neatly isolates assumptions
used In hypothetical rezsoning. In the next section we extend
our formalism to satisfy this need as well.

Hypotheticals

REASON's actual protocol is somewhat more complex than
so far illustrated. As a paradigmatic case consider the
following probiem (we will omit the refutatton assertions in this
exampile for the sake of brevityk

Given: {or A B)
{Implies A C)
(Implies 8 C}
{Imptiey € D)
To Show: o

Let us assume that REASON decides to conduct the proof
by case-splitting the disjunction (OR A B). This method
causes a set of conjunctive sub-goals, in this case, (Imphes A D)
and {Imphes B D). Each of these is proven by the standard
conditional  proof method, assuming the antecedent and
attempling lo prove the consequent. We extend the goal

LA L -




assertions to include an (unordered) set of asssertions which
have been assumed as part of the hypothetical reasoning
process feading to the current sub-goal. We oblain:

F-30 (or & B} {premise)
F-31 (implies & ¢} {premize)
F-32 {wmplies b ¢} {premise)
F-33 (implies ¢ o} {premise)

F-34 (subgoat d for {lop-level} in{})) {premise)

F.55 {poat d for {top-level} in {1} {svbgon) [-47}

F-B7 {shaw d by {3plitting f-30} {scceptor £-64 f-56)

for {top-level) in ()}

F-100 {goal {i1mplies & &) (subgoal f-74)

tor (d {(lop-ievel)) wn (1)

F-110 {show (wmpiies & d) {acceptor £-105 £-107)

by (standard implication)
tor {d {top-tevel)) in ()}

F-112 & {etsumption f-113 1-114)

F-1286 (goal & {subgenl f-11%)

ror {{implies & d)
¢ {top-tevel))
in {8}

F-122 ¢ (mp 1-31 F-112)

F-i27 d {mp 7-33 £.322})

The keyword “for™ indicates the subgoal stack while the
keyword “in” indicates the assumption context. Notice aiso that
two rules are generated to watch for an occurance of the fact D;
each such rule asserts that fts respective goal is satisfied if the
fact D ever comes in. However, at this stage the deductions
performed do not indicate that the top level goal D (F-BB) is
satisfied by the fact F-127, only that the sub-goal D (F-126) is.
If the system declared F-55 satisfied, then the entire set of
control assertions would be oured and the deduction would
stop, incorrectly claiming that the mam goal had been proven,
This would be a mistake.

The classic sotution to this problem in Artifical Intelligence
fanguages such as CONNIVER and QA1 is to use a conitext
mechanism to represent the “echelon” in which the implication
will be derived. Typically, a new context is created in which
the assumption A as well as the new goal D {or its analogue)
are asserted. When the fact D comes in, the satisfied assertion
1t added 1o this new context which is then discarded. The
problem with this approach is that it is altogether possible that
the fact D derived in this new context might not in any way
depend on the assumption A, in which case the main goal D
ought to be satisfied; the context system i incapabie of doing
this since the contexts are strictly nested. Thus, the chronology
of the deductive process, as opposed to logical dependency, play
the leading rote in such systems.

Our system instead uses the dependencies maintained by
the truth maintainence system s well as the explicit control
astertions to guide itsell to appropriate conclusions. Given an

assertion P triggering the pattern of some goal-watching rule,
the system must:
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1. Request the Truth Maintainence System o prepare a ist of
all assumptions
which support the satisfying fact P.

2. Fetch all goal statements whose goal matches the satisfying
fact P.

3. For each goal assertion test whether the assumptions found

in § are a subset
of the assumptions listed in the goal-assertion’s context hist.

4. Discard those goal assertions which fail the test in 3

5. For each of the remaining goal assertions in 4 assert that

the fact P
satisfies the goal assertion.

We can see that this procedure wouid result in the following
assertion when apphed to the situation described above:

F-120 fsatrsfied {goat-found f-127 r-112)

(goat &
for {{implies & d)
¢ (top-level))
in {a))}

but that the goal assertion F-55 would not be satisfied since it
has an empty assumption context while the assertion F-127
depends on the assumption F-1i2.

The algorithm we have just stated is one which determines
whether a certain pattern of dependencies obtains and acts only
in that case. This is expressed by 2 new kind of rule {called an
S-RULE, for support rule) which is triggered whenever the
pattern of support underlying its trigger fact changes. The
rule may then perform whatever test it likes by examining the
Truth Maintainence System's justifications. These are included
in 2 list of tests which must succeed before the body 1s
executed. The foltowing is the support rule impiementing the
above algorithm,

{Rute {{:T1 {gosl :p for :steck in rcontexi}}}
{S-RULE {(:12 :9}}
{{subset {assumption-support 1£2) :context))
(assert (satasfred :f1}{goal-found :121)}}

We can see that the above rule wilt trigger correctly and
wilt only assert that the sub-goal F-126 is satisfied. This will
ont the control assertions concerned with this part of the task,
achieving the effect of teaving the context. Notice, however,
that if the assertion F-§27 had not depended on the assumption
F-112, then the main goal F-55 would have been satisfied. In
that case we would be through and the entire set of control
assertion would go sut.

The system next moves on to proving {Implies B D) which
proceeds as above; the support rule triggers and satisfies the
sub-goal but not the main goal Finally, the case-splitting rule
completes its work and asserts the fact F-127 D one final time.
However the suppart for this conclusion is the two implications
{Implies A D), (Implies B D) and the disjunction {Or A B).




Thus, the support patiern does not involve any assumption
and the support rule can now, correctly, conclude that the goal
F-55 is satisfied.

Conclusions

Although our disaipiine of representing control states
exphaitly involves considerable overhead, it also gives the
problem solver greater (flexibiity. Wih the price of
computational power decreasing with 1ts currenl breakneck
speed, even a large fixed factor overhead can be tolerated as
long as this resulls in flexibility and naturalness in the
reasoning system.

This flexibility plays an important rofe in the program
understanding system of which REASON js a part. Programs
are understood 1 this system through a process of symbolic
evaluation [Smith & Hewst, 1975), [Rich & Shrobe, 1976],
[King. 1976), [Yonezawa, 7). One of the difficulties in such
systems i3 the complexity of symbolically evaluating side effects
on complicated and shared list structures. The approach taken
in REASORN s to inittally make simplifying assumptions and
develop a "first order theory” of the program. This first order
theory 13 represented by TMS dependencies. During the mare
careful analyses which follow, vartous of these simplifying
assumptions can be removed; the TMS then outs those facts
which no longer have valid support, signalling the
programmer if crucial facts no fonger hold, The programmer
can intervene at this point, medifying the program so that &
behaves correctly under alf conditions. Again the TMS can
analyze the effects of the proposed changes by examination of
the dependency structure. Thus, the full blown analysis of the
program is developed by perturbation of the simpler "first
order theory”. This technique is explained in greater detail in
[Shrobe, 1978).
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INVERTIBILITY OF LOGIC PROGRAMS
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Abstract

predicates can describe functions; the argu-
ments of the predicate are the {nput and output
parameters of the function. Logic programs de-
seribe relationships between objects rather than
merely sequential instructions, and it {s common
for both a function and its inverse to be computa-
bie by the same logic program [2]. Given values
for some subset of the arguments to a function-
describing predicate, we may be able to decide,
in general, which of the remaining arguments are
computable by the logic program.

The concept of functional inverse can be gen-
eralized in the context of Jogic programming. A
new kind of inverse, called j-inverse is defined.
Two algorithms which analyze and test the recur-
sive structure of logic programs for any specific
invertibility are presented, A set of guidelines
to help the logi¢ programmer construct j-inverti-
ble programs fis given,

1. Introduction

A function is a mapping f:D + R or f(x} = vy,
f£({x) must have a unique value, that 1s to say it
myst map to exactly one value in R for any given
element of D. We can extend that definition by
allowing both the input and the output to be
tuples. For example

f:Dl x...Dn -~ R.i % R2 x...RR or
f(x},...,xn) = (y1,...yk).
We say that f is invertible 1f there exists a
function £V such that f'1(y) = x iff f{x) = ¥.

We wish to restrict the notfon of functional
inverse as follows:

If f(xj.....xn) = y, then we say that f is
j-invertible if for j=n, fj exists as follows:

fi(xl"‘°xj-1’xj+l""’Xn'Y) =%

That is to say . given all values of the ntl tupie

(x1....,xn.y) except X;, we can find X5 fj is
the g-inverse of f. The value y maybe a k-tuple
but for the purposes here we do not decompose it
as we do the input n-tupie.

. If a function f is invertible, then it is
j-invertible for all j, 1 <j=n, since inverti-
bility implies that given y we can find Xys.000Xys

$o0 any values x; that are provided are redundant.

The opposite is not true however, Given a func-
tion f, even if it is j-{nvertible for all

1sd=n £} does not necessarily exist. A
counterexample is the arithmetic function, add,

on integers:
add{a,b) = ¢
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There are, in general, many pairs {a,b) that add

maps to ¢; so there is no way to define add'x.
However, add is 1- and 2-invertible;

add}{a,c) = ¢g-a and addz(b.c) = ¢-b.

A function is invertible, fin general, when
the functional mapping is 1-1 and onto, A func-
tion is j-invertible if and only if all pairs of
{n+1)-tuples (x1,...,xn,y) such that

f(x].....xn) = y differ at position j only if they

differ in at Jeast one more position. There are
many interesting functions that are not invertible
in general but they are j-invertible for some j.
Given a function, we frequently would Tike to be
able to define a single program to compute this
function that can also compute the partial in-
verses. We may also want to start with more than
one of the parameters unknown and compute one or
more of the unknown values.

2, Invertibility of Functions Expressed
as Logic Programs

A Jogic program [4] is a set of WFs in the
form L + R and one WF, the call, of the form «~ R
where L is a predicate and R is a conjunction of
predicates, All variables are implicitly univer-
sally quantified. Logic programs are theorems
describing relationships among gbjects. While an
interpretation of these logic theorems can drive
a computation, there is no notion of certain
parameters for input and others for output.
nontrivial invertible logic program is given in
another paper [3).

We now define some terms that will be needed
later, A logic program is a set of logic proced-
ures. A logic rocedure is an individual implica~
tion A « B where B may be empty; A is the proced-
ure head; B is the procedure body. A termination
condition of a recursion is @ procedure A « B such
That B does not contain a predicate whose name is
the same as the predicate name of A. That is to
say, it contains no recursive calis to the proced-
ure. We say that a variable, x, drives the compu-
tation of a procedure, if every recursion causes
The value of x to be nearer a value that will
cause the recursion to terminate.

We now construct a logic program to compute
exp{x,y) = ¥ = 2

by successive muitiplications. We assume a 2«
invertible predicate MULT(x,y,z} which is true if
and only if x-y = z, f.e. given x and ¥ computes

z and given x and z computes y. This exponential
function is defined by predicate EXP1, which has
the semantics that EXP1{x,y,z) is true if and only

if xy =2,

—————— —_—
—




The logic program is:
EXPY(x+1,0,1) <
EXP1(x,y+1,w) « EXPY(x,y,z} A MULT(x,z,w)

The meaning of A « B is the standard logic inter-
pretation "A is implied by B". The meaning of
the program is

(x+1)0 =
(xy+3 e xez) « (x¥ = 2)

It is computationally effective as can be
seen by the example below. Starting with the
call, and using the procedural interpretation of
Horn clauses given by Nowalski [2], we get a term-
inating sequence of sub-goals:

+ EXP1(3,2,answer)
EXP1(3,2,answer) « EXP1{3,1,2} A MULT(3,z,answer)
EXP1{3,1,z) « EXP1(3,0,2") A MULT(3,2',2)
EXP1(3,0,1) «

The last call to EXP1 gives z' = 1 by the termi-
nation condition; MULT then gives z = 3 and then
answer = 9, or EXP1(3,2,9), as desired.

Suppose we wish to 2-invert EXP}. For

exampte, evaluate 3Y =% toget ¥ =2, The se-
quence of cails starts

« EXP1{3,Y,9)
EXP1(3,Y,9) « EXP1(3,y,2) A MULT(3,2,9)

Since MULT is 2-invertible, we get z = 3; hence
substituting 3 for z we derive EXP1(3,y,3} where
Y i? bound to y+1. Continuing we get new sub-
goals

EXP1{3,y,3) « EXP1(3,y',2'} A MULT(3,2",3)

With y bound to y'+1. MULT(3,z',3) gives z* = 1.
Then in evaluating EXP1(3,y',1}, the terminating
condition applies; thus, y' = 0, y = 1, Y = 2,
and we derive EXP1(3,2,9), as desired.

Suppose we wish to 1-invert EXP1, For exam-

ple, for what value of X will X° = 277 The
following sequence of subgoals is generated:

«~ EXP1(X,3,27)

EXP1(X,3,27) « EXP1(X,2,w) A MULT(X,w,27)
EXPH{X,2,w) « EXPTI{X,1,W'} A MULT(X,w',w)
EXPI(X,1,w'} « EXP1(X,0,w"} A MULT(X,w",w')

EXP1(X,0,1) «

§ In EXP{x+1,0,1) « the expression x+1 s used

to denote a nonzero value. Another representa-
tion for this is

. EXP{x,0,1} « {x > 0), but the Jatter has a
slight computational disadvantage.
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The termination condition gives us w" = 1 and the
definition of MULT yields X = w' giving

EXP1(X,1,X) A MULT(X,X,w)

at the first level of recursive return. But we
fail here because while MULT can, awkwardly, com-
pute square root by calling MULT{x,x,C) where ¢
is a given constant natural number, it cannot
compute square roots where the third argument is
unknown as well, In effect, the collective calls
to MULT are taking n-th roots of the original
third argument, and that is beyond the capability
of MULT. g

Now we make a distinction between mathemati-
cal invertibility and computational invertibility.
A function f may be mathematically invertible but
be specified as a logic program that will not

‘compute the inverse. If a function is computa-

tionally invertible it is necessarily mathemati-
cally invertible.

It may also be the case that a mathematically
correct logic program will be computationally
reasonabie in one direction and horribly ineffi-
cient in the other. The path of choices in a
computation may be forking such that in one di-
rection many cases are being joined together as
in Figure la, and in the other direction a choice
must be made from many alternatives as in Figure
1b. The latter case may require much backtrack-
ing where incorrect choices are made,

Figure 1}

3. When are Logic Programs Invertible?

The process of interpreting a logic program
starts at the call, descends recursively to a
termination condition, then returns eventually to
the call. The question of j-invertibility de-
pends upon the sequence of bindings of variables
as the recursion is carried out; suvccess is
achieved when the {unbound) j-th variable of the
call is bound to a constant value. More general-
ly, if any subset of the variables is known at the
call, we can ask if any of the unknown values can
be computed.

Parameter list patterns are used to designate
in a parameter 1ist which parameters are known
{i.e. constants) and which are unknown {i.e. vari-
ables or functions of variables}. Given a param-
eter list input to a procedure, we can construct
an input pattern or input template by replacing
constants in the parameter 1ist by 1's, and




replacing variables or funct'ions§ of variables by
0's. So, for example, from parameter list
(2,x,yt1) we construct template {1,0,0}. We may
tie parameters together if some of the unknown
variables are the same or simple functions of each
other, such that if one can be computed, the other
is known as well. E.g. parameter iist {2,%,x+1)
corresponds to pattern (1,0,0}.

We have two algorithms that map input tem-
plates, i.e. known vS. unknown input parameters,
to output templates that show what total set of
values is known after the computation. For exam-
ple, for procedure MULT, input pattern (101) maps
to (111), since given the first factor and the
product, the other factor can be determined.

The first algorithm is a simple, easy to
compute, function that gives a strong indicator
of the pattern mapping, but cases <an be con-
structed in which the computed mapping will be
stronger than reality. The second algorithm is
similar to the first, but makes added assumptions
that require some meta-analysis of the given func-
tion. The second algorithm is a sufficient test,
j.e. at least all of the values claimed to be
known, will be known.

An input pattern tells what fnput values are

Then, since the recursive call to EXP carries
the same pattern as the original, we may assume
that that pattern is continued as long as we make
recursive calls,
termination case applies, we indicate the known
values supplied by termination.
example, the termination condition

has pattern (011).
tion, the second and third parameters, at least,
are Known.
terminating pattern and the pattern of the sub-
goal to which it applies:

EXP1{101} « £XP](1‘1) A MULT{113)

deriving
EXPT(111) « EXP1{111) A MULT(IN1).

From this we know that at the deepest level of
recursion, the desired unknown is supplied, and
returned to the calling subgoal, and likewise at
every level of recursion, since the returp sup-
plies as many knowns as the termination,

Algorithm 1:

Eventually, when {(and if} the

In the above i

EXP{x+1,0,1) «
So, at the time of termina-

We perform an inclusive or on the

gxp1(0t1)

Heuristic

known. From that we can show where known values

appear in the entire procedure. For example, in- Purpose: To discover the input-to-output map-
put pattern (101) given to the head of the recur- pings of a predicate, Q.

sive case of EXP1 gives procedure pattern: Hypotheses: A1l auxiliary functions' input-to-

EXPT (101(«?@0@01)

l.e. the first and third parameters of the head,
x and w, are known throughout the procedure. 1.

The procedure operates in two stages:

1) Going down the recursion, we check off
values when we know that they are com-
putable, Even though the recursion can
go arbitrarily deep, there are a bound-
ed number of procedure patterns.

2) Once all the derivable procedure pat-
terns are found, patterns of the termi-
nation conditions are applied to show
which values will be given by termina-
tion.

Throughout both stages, propagate new values for
variables wherever the variables appear, and when
applicable, replace the input patterns of sub-
functions by the output patterns to which they
map. E.g., for the procedure above, MULT(101) is
known to map to MULT{111}; fill in the *known"
indicator wherever the newly computed variable
appears. So, the procedure pattern becomes

S
EXPT(107) « EXPI{101) A MULT{111)

§ We assume the only functions that are

allowed as part of the parameter 1ists are simple
constructor functions, e.g. +1.
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output mappings are given. The only
functions appearing in terms are
constructor functions.

Set-up.

The input pattern is determined from
the call: « Q{pl,...,pn}. He replace in
the call:

a)} each constant or constructor ap-
plied to a constant by the value 1.

b} each constructor applied to a var-
{able by the variable itself. Note
that now our patterns are made up
of variables and 1's. Connections
between unknowns are now implicit
by their having a single name.

The procedure templates are determined
from logic procedures of the form

Q(tl,...,tn} « Rl A ... A RK,

We replace each term in the procedure as
in la and 1b, above. A template is re-
cursive if the logic procedure was recur-
sive. The call is considered recursive.

Let PPS be the set containing the
call as modified in Ja & b.
Propagation of known values.

While there is a conjunct Q{pl,....pn}
appearing in the body of a procedure pat-
tern of PPS such that Q{pl,...,pn) does




not appear as the head of an element of
PPS (up to a change of variables), cre-
ate new, additfonal elements of PPS from
the procedure templates as follows:

a) Unify the head of a new instance
of each recursive template with

Qlpl,. vespn).

b) The auxiliary functions are the
subgoals of the procedure template
that are not recursive calls to Q.
Unify the inputs of the auxiliary
functions with their corresponding
output mapping. E.g. MULT maps
{(1z1) to (111?. Unifying these two
patterns binds z to 1. ?This re~
cords which variables become bound
in the course of the computation of
the auxiliary function.} This step
is repeated until no more changes
are possible.

c) gdd this new procedure pattern to
PS.

3. Applying termination cases.

a) Add ail non-recursive procedure
templates to PPS.

b} Partition the elements of PPS into
recursive and non-recursive sets,

c) Select a recursive subgoal from the
body of an element of PPS, and
unify it with the nonempty head of
any non-recursive element. Apply
the bindings only to the recursive
pattern. Drop the recursive sub-
goal that was just unified. Handle
auxiliary functions as in 2b. The
modified recursive procedure may
now be non-recursive. If so, move
it to the non-recursive partition.

d) Repeat b} unti} the recursive part-
ition is empty.

4, Interpretation of results.

The output pattern Q{pl,...,pn} such
that {pl,...,pn) is the most specific
parameter list {f.e. contains the most
number of 1's) that will unify with the
parameter 1ists of all the heads of the
procedures of PPS and the unified call,
without binding te 1's any variables of
the heads, then inclusive or'd with the
input pattern.

Example
Show Expl maps {101) to {111},
Step 1}
PPS = {+EXPI{1,Y,1})
Procedure templates are
EXP1{x,1,1) «
EXP1{X,y,w) « EXP1{x,y,2) A BULT(xX,z,w)
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Step 2 (only one iteration required)
PPS' = {« EXP1(1,Y,1},
EXP1(1,Y,1) + EXPT{1,Y,1) A MULT(1,1,10)

Step 3
PPSY = {« EXP1{1,Y,}]),
EXP1{1,1,1) « MULT(1,1,1),
EXP1{x,1,1} «}

Step 4
Qutput Pattern = (1,1,1) (or{111}))

Example
Show Expl maps (011} to itself, i.e. the unknown
is not computed.

Step 1
PPS = {« EXP1{X,1,1}}
Procedure templates as before

Step 2 (requires two jterations)
PPS' = {« EXP1{X,1,1},
EXPY(X,1,1) « EXPT(X,1,2) A MULT(X,z,1)}
PpPS" = {« EXP1{X,1,1),
EXPI(X,1,1) « EXP1(X,1,2) A MULT(X,z,1},
EXPI(X,1,2) « EXP1(X,1,2') A MULT(x,2',2}}

Step 3
PPS*'? = {« EXPI(X,1,1},
EXP1(1,1,1) « MULT(1,1,1},
EXPI(X,1,2) « MULT{X,},z},
EXP1(X,1,1) +}

Step 4
Qutput Pattern = {(u,1,v) v (011)

{010} v (011)
; (o11)
So, nothing new is computed.

It

Algorithm 2: Precise

This algorithm is the same as the previous
one except that in steps 2a and 3¢ when 1's are
unified with 1's, a case-by-case meta-argument
is required to show that the actual constants are
unifiable. If such is not the case, the proced-
ure pattern being generated is discarded.

The meta-arguments are handled by expressing
the range of a variable as recurrence relations.
Good programs already exist for handling such
analysis [1]. Then, so long as the input value
can be shown {or assumed) to be in the range of
the recurrence relation, the binding is allowed
to proceed.

The foliowing theorem shows the soundness of




Algorithm 2. Without loss of qenerality, the ar-
gument lists are represented as two variables, x
and y. The input vector is x and the output vec-
tor is y.

Theorem. Algorithm 2 is sound, i.e. if pro-
cedure P(X,y) is shown by Algorithm 2 to map in-
put template {10} to output template (11), then
procedure P, given constant input x within the
domain required by the meta-analysis of Algorithm
2, will compute y.

Proof. The proof is by induction on the
depth of recursion of the computation for an ar-
bitrary constant x. Suppose that Algorithm 2
claims that y is computable given 2 constant X,
and x is within the domain demanded for x, then
there are two cases, depending upon whether x i$
an initial value of its recurrence relation or
not. '

Basis Case, x is an initial value of its
recurrence relation. Then the result of unifying
the call with the proper termination condition
must have supplied valde y, since the output pat-
tern is restricted by that binding.

Genaral Case. X is not an initial value,
but i inciuded by the recurrence relation. Then
a recursive procedure

P(UIV) + Q](ulvlw) Aaes A Qn(utvlw)

must exist such that the meta-analysis showed
that {u,v) is unifiable with {x,y), and we assume
by induction that the Qi's callectively compute
the components of vector v, given u. Therefore,
P computes v given u, by returning the computed
V. .E.D.

Following the execution of Algorithm 1, the
only case of unifying 1's with 1's in steps 2a
and 3c, takes place in step 3¢, when head
EXP](x,1,1; is unified with body subgoal
£XP1{1,Y,1). We need to show that since unifying
the third parameters unifies 1's, that the third
argument of the recursive subgoal eventually
reaches the third argument of the termination
case, namely constant value 1. (It is coincident-
al that the constant is the same as the place-
nolder for constants.) The recursive relations
for the third parameter are:

z5 = 1

204 ° 4k

where x is a given natural number, the first ar-
gument. So, as long as the third parameter of

the input is, in fact, a power of x, the applica~
tion of the termination case in 3¢ is guaranteed.

In the second example, again the only unifi-
cation of 1's with 1's takes place in step 3c,
where EXP1(X,1,2) and EXP1{X,1,2z') each are uni-
fied with £XP1(x,1,}). Here the recurrence rela-
tions are the same for the two situations and
_involve the second parameter. The recurrence
retations are:
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YO"O
Iny © yn+]

So, if the input value of the second parameter is
a natural number, the binding is allowed and
termination is guaranteed.

4. Constructing Invertible Programs

The preceding algerithms determine feasibili-
ty of various directions of computation of a pro-
gram, The following are a set of guidelines that
help the logic programmer to construct j-inverti-
ble programs. These guidelines exclude some j-
invertible logic programs and are thus overly
restrictive. More 1iberal, but less intuitive
guidelines, can be derived from the preceding
algorithm.

A. Termination conditions: There should be a
set of termination conditions, one of which
can always be reached from a call in which
the j~th parameter is the only unknown and
in which the j-th parameter is known or <an
be directly computed as a function of some
of the other arguments.

for exampie, consider the termination condition
MULT(x,0,0} «. It is acceptable for 2-inverti-
bility because the second parameter is a constant
and we always reach this termination condition.
However, it is not acceptable for 1-invertibility
since once we recur and bottom-out, we stil1 have
no way to estabiish the value of x except by
evaluating algebraic formulas. For example, :
MULT(x,2,6) calls MULT(x,1,2z} where z = 6-x which
calls MULT(x,0,z') where z = 6-x-x which = 0. So
with a Tittle atgebra or exhaustive backtracking
we can deduce that x = 3. However, this is not
what is meant by directly computabie.

B. Invertible subfunctions: The other functions
us$? én The definition must be inverible as
called.

For example, consider the fo{1owing predicate:
F(x!,x2+1,y) - F(x],xz,y')

A Gly',y)
For F to be 1-invertible, G must be 1-invertible,
since y is supplied and y' needs to be computed.

€. Driving the Computation: At least one known
value must drive the computation toward
termination.

For example, consider the function F, above. If
Xo is unknown, it cannot drive the computation.

So for F to be 2-invertible, since X1 does not
change, the mapping y 3 y' must drive toward a

termination condition.

A way to guarantee that this property holds
for any j-invertibility, 1 =Jj=n is to have at
least two arguments driving the computation.




D. Preconditions: A deciding preconditioh must

apply to a known value.

A precondition is a predicate, used in the
body of a logic procedure, that gives the criter-
jon for choosing that procedure. The precondi-
tion may or may not be essential to the mathemati-
cal definition. But without the aid of precondi-
tions, much backtracking may, in general, be re-
guired.

There is nothing special syntactically about
the preconditions, and recognition of predicates
as preconditions is totally a control issue, i.e.
something known by the system that provides an
interpretation for the logic program.

The following is an example of logic proced-
ures named F in which the choice among the pro-
cedures {5 determined by preconditions which test
the relative sizes of x and y.

F(x,¥,2) « {x=y) A G](X,y,l)
Fix,y:2) + (xo¥) A Gy(x4y,2)
Flx,y,2) + (x<y) a B3(x,y.2)

{Another example of preconditions is in the
FACTOR procedure presented later. GCD is necess-
ary to the mathematical definition, but can also
be used as both precondition and termination
condition if w and n are given, In the case where
p is not given, f.e. 3-invertibility, its use as
a termination condition is essential to the effi-
ciency of the algorithm,)

Since the preconditions determine the effi-
ciency of the algorithm, one must have some way
of tying the preconditions to the parameters such
that certain preconditions are used if certain
parameters are known, A way around this problem
is to have at least two preconditions, one of
which can always succeed if, at most, one of the
n+1 arguments of the original function are un-
known. The following is an example:

F{xayz) « (x=y) A Py(2)
A Gz(x.y,z)
F{x,y:2) + (oy) A Py(2)
A By{x2¥,2)
F(x,y,2) « (xy) A Pylz)
A 63(x,y42)
Now, so long as at least two out of three of
the values x, y, and z are given, either the rela-

tive sizes of x and y can be determined, or the
predicate P, can be appiied to z. So, if the

comparisons between x and y and the Pi’s serve as

preconditions, at least one will always be com-
putable in each procedure. For the Pi’s to

’ efficiently serve as preconditions, exactly one
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of P](z). Pz{z), and P3(z) should be true for a
given 2.

5. Why is EXP1 2-invertible but
not 1-invertible?

The 2-invert test on EXP1 succeeds, i.e.
{101) maps to (111), but the 1-invert test fails,
i.e. (011) maps to (011). Intuitively, that
makes sense according to the guidelines. EXPI
fails condition A for l-invertibility since the
first parameter of the termination condition is
neither constant nor can be computed from the
others. The guidelines are met, however, for 2-

inversion.

6. Another Exponentiation Algorithm

There 1s an entirely different approach to
exp(x,y) that is more obviously j-invertible. It
is based on the fact that every positive integer,
X, is a product of powers of primes, that is to

say
vk

X = ZV} 3”2 ves Py

We have z = ¥ 1ff
_— 2y-v1 3y-v2 - pky-vk.

If we are given x and y, and we can factor x, then
we can construct z out of the factors; given x

and 2z, the exponents of the primes in the factori-
zation of z must be a constant multiple, y, of

the corresponding prime factors of x; given y and
z, factor z, divide the exponents of the prime
factors by y, and collect the factors to create

X

We must first provide an fnvertible factor-
ing predicate. Suppose we have a predicate,
GCD{x,¥,2), such that z is the greatest common
divisor of x and y, and z is undefined if x or y
is zero. The FACTOR(M,N,P,R} is true if and only

W>0, N>0, R>0, #=N:R, and N does not
divide R, FACTOR is defined as follows:
FACTOR(w,n,0,w) « GCD{w,n,1)
FACTOR(w,n,p+1,r) « GCD{w,n,n)
A MULT(w",n,w)
A FACTOR{w',n,p,r)

The normal call is, for example:
+ FACTOR(36,2,p,r)
which yields
+ FACTOR(36,2,2,9).
A i-invertible call fis:
FACTOR(answer,2,2,9)
which yields ’
FACTOR(36,2,2,9).
These are the only ways that FACTOR will be called




by EXP3.

EXPI(X,Y,2) 15 true if and only if X' = Z,
We have auxiliary function E such that E(X,N,Y,2)

is true {f and only if W ezforx>02>0
and for atl m, 2 = m = N, m does not divide X.

The formal definitions of EXP3 and E are:
EXP3(x,y,2) + E(x,2,¥,2)

£} sy, 1)+

E{x,n,y,Z} * FACTOR{x,n,p,7)
A FACTOR{z,n,p',r"')
A MULT(p,y,p')
A E{r,nt+l ..Y;T")

E repeatedly removes a prime factor, py,
from each of x and z and checks to see that their
powers are in the proper relationship, i.e. in1
for x and piy'V1 for z.

The semantics of E's two procedures is:
Welandnom 2=m=ndivides ]

(np-r)y = (Por) - (r = r') and

nom 2<m«<n divides r

EXP3 is both 1- and 2-invertible. Calling
EXP3 with pattern (011} calls E with pattern
(0111;. The invert test for E on {0111} yields
(1111). Calling EXP3 with pattern (101) calls £
with pattern (1101), and the invert test on
(1101? yields (1111). Notice that E passes the
3-invert test, even though the third parameter of
the termination condition is neither constant nor
computable from the other parameters. This dem-
onstrates the conservatism of guideline A.

Note that E and FACTOR are not j-invertible
for all j. However, that creates no difficult-
jes. E is called with only patterns (0111), .
§1101). and {1110} and FACTOR with only patterns

1100} and {0111). A1l of those computations
succeed. The invert test gives the proper an-
swers for all cases of EXP3, £, and FACTOR, as
well as all other examples in this paper.

1f we wished to have a factor program that
is j-invertible for all j, we could define a new
one, FACTORZ.
FACTOR2(w,n,p,r) « EXP3{n,p,z)

A MULT(z,r,w)

This new program is totally j-invertible, but

will not produce p and r, given w and n, as

FACTOR would. These characteristics of FACTORZ

are demonstrated by the mappings of the invert
- test on the input patterns:

(0111) = (1111)
(1011) = (111)
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{1101) = (1111}
(1m0) = (1111)
(1100} = (1100)

7. Conclusions

We have defined the concept of j-inverti-
bility for function and given two algorithms to
test logic programs for invertibility, and while
the answer is not definitive, it is indicative.
The algorithms do more than just test for j-in-
vertibility; they map arbitrary input patterns to
output patterns.

We have also presented some guidelines for
constructing j-invertible functions. The guide-
lines are in terms of the predicate form of defi-
nition of the function, and are syntactic in
nature. ‘

The algorithm could also be used by a logic
interpreter in choosing the order of evaluation
of subgoals of a given procedure. That is, given
a procedure invocation, including its 1ist of
arguments, the interpreter can determine a par-
tial order on the subgoals which places the most
completely evaluable subgoals first, preventing
procedures from being called before they have
enough information to carry out their computa-
tions. Such control can be applied dynamically
by the interpreter.

Invertibility can be looked at in another
way. The number of unique variables appearing in
the parameters of a procedure call is the degree
of freedom of that call. In gemeral, the proced-
ure may be able to reduce the degree of freedom
by binding some of the variables. For exampie,
MULT (x,x,9) has one degree of freedom and in fact
the usual definftion of MULT will yield
MULT(3,3,9), computing the square root and leav-
ing zero degrees of freedom. Similarly,
MULT{x,1,2} has two degrees of freedom, HULT
will determine that x = z, 1.e. MULT (X, 7+X)
reducing the degree of freedom to one. Such
situations can arise naturally in inverting
predicates. How to treat them {is an interesting
question for which we do not yet have an answer,
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SUB-PROBLEM FINDER AND INSTANCE CHECKER
TWO COOPERATING PREPROCESSORS FOR THEOREM PROVERS
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Abstract

Two pre-processors for theorem provers are describ-
ed, which when applicable, will lead to search space
simplification,

Both were implemented and integrated with an exist-
ing resolution type connection graph theoremprover.
Examples are provided which confirm our claim of
search space simplification.

Key words and phrases: Theorem proving, pre-process-
ing, search space simplification.

Contents:

I. Pre-processors for theorem provers in general.

2. The independent sub-problem recegnizer.

3. The instance checker.

4, Interplay between INSURER, INSTANCE and COGITO
and what is to be desired.

5. Examples.

6. Summary.
7. References.
Appendix.

1. Pre-processors for theorem provers in general

-

The main paradigm in automatic theorem proving is

or should be that search is to be avoided, post-
poned, or else to be minimized. This should be done
by any means one can lay one's hand on while main-
taining completeness, generality and not succumbing
to the ad-hocness as advertised by the proceduralists.

Search space simplification has been a major goal
in the resolution scheol. Exploiting 'larger' more
numerous operators (derivation rules) is the main
activity in the natural deduction school. There are
however many more options to be developed withwhich
the role of search can be limited to those circum-
stances where there is no sensible alternative.

Already slumbering for some years is the applica-
tion of multi-level search in theorem proving
{Sacerdoti, 1973, /7/)}. It is incomprehensible that
the suppoert from a model technique (Gelernter,
1959, /3/) bas not been pursued. Search guidance
with heuristic functions and automatic improvement
of them is still inconclusive, although it has be-
come clear that syntactic features can contribute
only modestly to such functions. Chosing an
appropriate representation (within one language
say predicate calculus) is a wide open problem.
Determining the right representation language is
not yet a problem since it is net known
whether multiple representation languages are ne-
cessary,

The former two issues belong to the preprocessing
repertoire. We mention a few more. Selection of
relevant axioms and/or definitions and/or already

proven theorems/lemmas to prove a conjecture; find-
ing a counter example of a conjecture to make sure
that a proof is impossible; finding a similar al-
ready proven theorem to see whether its proof can
be generalized and/or modified to handle a con-
jecture; instantiating a second order theorem {e.g.
induction scheme); reducing a conjecture to inde-
pendent sub-problems (reduction to weakly dependent
sub~problems can be done in the multi-level search
framework); recognizing that a conjecture is an
alphabetic variant and/or an instantiation of an
axiom or an already proven theorem; etc.

This paper reports the results of implementing the
two last mentioned. The next section describes the
independent sub-problem recoganizer. Section3deals
with the instance checker. Section & discusses how
they are cooperating and how they should be related
from a process point of view, Two examples are
given in section 5.

2, The independent sub-problem recognizer

The sub-problem recognizer we developed is based

on components of a predicate calculus - conjunctive
normal form translator. Our translator was inspired
by the procedure as described in /Manna, 6/.

A small improvement to this translator led to sub-
problem decomposition. First we present the original
translation. Then we expand one of the steps (as
was also partially done in /Loveland, 5/ page 34).
A subset of these translator rules make up the sub-
problem recognizer.

The translator in /Manna, &/, omitting here ir-
relevancies, consists of the following steps:

|- Eliminate 'if ... then' and 'if and only if'.
Replace ADB by V(4,B}, and
ASB by ACV(vA,B), V(A,NB)).
2- Move 'not' inwards.

Replace ~(x)A by (@x)A,
L(Ix)A by (x)nA,
AV{AL, ..., An) by A{MAD, ..., MDD,
AA(AL, ...y AN) by V{nAY, ..., MAD), and
ANUA by A.

3~ Push quantifiers to the right.
Let {Qx) be (x) or (&x), and let Xbe A or Vj
replace {Qx) ¥ (A}, ..., AL, ..., An) by
WAL, (QxIX(AL, .., Af-F,Ai+], .5, AB):
if x not free in Ail.

4~ Eliminate existential quantifiers (introduction
of Skolem functions). Pickout the leftmost well
formed part (3y)(B(y) and replace it by
BOE(R{ g0 o2 es Xin)} where

a) Kips +e+9 X, are the free variables of

(@y)(B(y)) which are universally quantified
to the left of (3y)(B(y));
b) f is a 'fresh' n-ary function constant.
5- Eliminate universal quantifiers.
6- Distribute 'and' over 'or’'.
Replace V(A}, ..., AL, A(BI, ..., Bk},
Ai+l, ..., An) by
A{v¢al, «.., Bl, w4, AN},
wees V(AL, suuy Bk, vuvy An)}e
If step(i) can be reapplied it has precedence over
step {i+1}.

110




Remark! A sequence of say universal quantifiers
should get special attention in step 3. E.B.

(x) (y) (VP (x,¥) s Q(y)} can be replaced by

(y)vialy), (x)}P(x,y)}*

Thus every universal (existential) quantifier in a
sequence of universal {existential) quantifiers
should be moved to the right of the sequence in its
turn to check whether it can be pushed further to
the right.

This procedure can be improved by expanding step 3
with:
3,1 Straighten out ‘and's and

Let ¥ be A or V.

Replace WAL, «ouy ALy ¥W{B1, ..., Bk},

Ai+l, ..., AD) DY
#(AII LR ] Ain Bly, »ons Bk)

Ai+l, 2e.y ADY,
tand' over 'or! or vice versa.

for's.

Distribute
Replace
(RIVEAL, +o0y ALA(BY, oruy Bk),

Ai+E, ..., AR) BY
(OANV(AL, «ooy Bly covy AR}y

iy ) erey BRy seey An)) and

(Ex)ACAL, +eor ALV(BL, vooy Bk},

Aitl, ..y AR} bY
(AxIVEA(AYL, oo By cons An},

veash(Al, vy BRy w0 Anr)).
Distribute quantifiers over connectives.
Replace
(YA{AT, ovry AD) BY AQCx)AL, +.oy (¥)}AD) and
@xIV(Al, «1vy AN) by VEx)IAl, «o s (x}An).

Example: Using the extended step 3 the formula:
0 [P IAHRGL Y AERIR(Y,2) ]
can be rewritten into!

(x) P(x)h(y)(x)Q(X.}')A(V)(Ez)R(Y,Z).

Observe that this replacement gimplifies the Skolem
function that has to be generated for the elimina~
tion of the (3z)-quantifier.

Remark: It is worthwhile to check for redundancies
{using the instance checker) after application of
step 3.2,
E.g. V({(x)A{x), aA{a), ...) can be simplified to
V(A(a), ...) while
A{O0Ax), Afa), ...) can be replaced by
A(RIAGKY, «o0)
Remark: For easy readability we used in 3.3 the
game variable 'x' in all the terms of the connect=
jve in the replacement. This does not hurt the
transiator. The instance checker however can get
confused and demands step 3.3 to be modified such
that each term in the replacement has a new fresh
variable.

3.2

3.3

The INdependent SUB-problem REcognizeR - INSURER -
consists of step ! upte the modified step 3 and
with step 6. It is obvious that in case INSURER
applied on a problem P produces a form with lead-
ing connective fand' its terms are independent
sub-problems and if all sub-problems can be proven
the P has been solved. The reverse statement that
INSURER will find a maximal decomposition if P can
‘be decomposed we leave as an intriguing task for
Aiello/Weyrauch's progran FOL f1/.

We end this section with the treal-life' example
given in box 1.

(N &)=
(2) (x) xe=x
(3) (r) ex=x
(4} (x) xI{x)=e
(5) (x) I(x)x=e
{6) (W) (sunsk(ﬂ)a-v((ax)ucx)fx
(x) () [B GO ARG ) H Gy 111
(x)(H(X)*H(I(x)))})
%)) (Hl)(HZ){SETEQ(HI,HZ)H(x)(HI(x)HHZ(x)))
(8) (g){xx)(H) (COSET (g, x%,H)}—
{SUBGR(H} A
(x) (xx{x)—> @y} (H{y) Ax=ye) 13D,
(9} (g)(n)(ﬂ)(cosm(g.xx.H)+{H(3)HSETEQ(xx.H)t-)

box 1 Axioms (1-5}, definitions (6-8) and 2
theorem (9) from group theoTry.

*x(yz)y=(xy)z

(1-5) are non-minimal axioms defining a group;
(6-8) are definitions of respectively sub—groups,
equality of subsets and of right-cosets; (9) is a
theorem expressing a property of cosets. Ubserve
that subsets are represented by l-argument first
order predicates, and that SETEQ and COSET are 2nd
order predicates. Direct translation of (1-8) and
the negation of (9} into conjunctive normal form
yields 39 clauses with together 109 literals.
INSURER however recognizes that (9) can be decom”
posed into:

410)] (g)(H){H(g)V(xxﬂ:mcoszf(g.xx.H)V
WSETEQ(xx,H)]} and
() (3)(H){NH(3)V(xx)E}COSET(g;xx,H)U
WSETEQ (xx},H) ] }*

Working on (10) (not done by INSURER, but by an-
other program component) the definicion of COSET,
SETEQ and SUBGR are respectively substituted. The
yresult is negated and together with {(i=5) trans-
lated into conjunctive normal form yielding 14
clauses with 23 literals, After each substitution
of a definition INSURER is called to check whether
further decomposition is possible. When working on
{11) this strategy is successful after substituting
away SETEQ. Two new sub-problems are found both
ending up with 14 clauses and 21 literals.

Although our connection graph theorem prover COGITO
is not yet able to handle these three sub-problems,
the chance to find a solution has increased with an
‘infinite' amount when compared to the non-decom-
posed situation.

INSURER alsc can handle the sorted predicate caleculus
that was introduced in /Champeaux, 2/. The same
coset example formulated in sorted predicate calculus
- without decompesition = yields 28 clauses with &}
literals. INSURER finds here also thres sub-problems
each having 2 clauses with respectively 16, {4 and
14 literals, A significant reduction again, possibly
bringing this problem within reach of the with
paramodulation extended COGITO.

3. The Instance checker

The instance checker (INSTANCE) we designed and
jmplemented is in fact & special case theorem
prover. It is an {nstrument with which a conjecture

111




can be recognized as being an alphabetic variant or
as a special case of an already accepted theorem.
Conjecture and theorem are expressed as closed,
slightly restricted - see below - predicate calculus
formulas,

Let T and K be respectively a conjecture and an

accepted piece of 'knowledge', The input of the re-

cursive INSTANCE consists of three elements:

=~ two forms T and K for which must hold that they
do not share variables and that disregarding
permutations of sequences of quantifiers and/for
arguments of 'and' and 'or' it is the case that
T = INSURER(T) and K = INSURER(K); and

~~ a list of variables, VR, to be explained in the
sequel, which at the top level call is empty,

Although at the top level one is mostly interested

in a yes-no answer, for reasons that should become

clear in the description of INSTANCE, the output is

more substantial in the positive case. The output

of INSTANCE is:

== NO, signifying that T is not an instance of K,
or else

== a list of triples, where each triple is of the
form {g, To, Ko}, with o a substitution, To a
"without loss of generality substitution instance"
of T being a logical instance of the special case
Ko of K. It should now be clear that if
NO # INSTANCE(T,K,#) then K |— T,

An example where more than one triplte will be re-
turned by INSTANCE is:

T = (3x)Ax,x),

K= (y}{A(p,y)AA(q,y)), with the output:

x*p
({y+p, A(p,ph Alp,pihA(q,p)}

x+q
{y._q. Al9.9), A(p,Q)AA(q,q)}).

We give a simplified description of INSTANCE
omitting subtilities that have to do with the
equality predicate, [acy stands for: the identifier
 oceurs in the expression y; Sgy is the result of
substitutinga for f in the expression y; thus

S%y = y6 when ge{8+u}:

We assume that the employed unification algorithm
is willing to accept also non-literal predicate cal-
culus formulas and so we get for example {z«a} when
calling UNIFY((x)A(x,a)}, (x)A(x,z),{z}i}°
INSTANCE(T,K,VR) ;=
if T and X are unifyable, taking into account VR,
under substitution ¢
then return with ({o, To, Ko})
else
if K = (@){Form(ua))
then U:=INSTANCE(T, Form{a), VRU{a})
if U=NO then return with HO
else (thus U=Y{o,, x;, y;])
return .{oi, Xiy Viby
- i
where yi=(a)yi when aey; or else y;
else
if T = (3a)(Form(u))
then U;=INSTANCE(Form{a}, K, VRU{a})
if U=NO then return with NO
. else returs Yo, , Xov;)

ot i
. where xi-(aa}xi when QEX; or else xg

12

else
If T = {(a)(Form{a))
then let ¢ be a fresh comstant
U:=INSTAHCE(S§Form(u), ¥, VR}
if U=NQO then return with NO
else return i{o;, ¥;, y;}
where xi=(a)§gxi when céyi
or else x4

else
if K = @a)(Form(a))
then let ¢ be a fresh constant
U:=INSTANCE(T, 8§ Form(ax), VR)
if U=NO then regturn with NO
else return y{si, Xy, Vi)
where }'i-ﬁu)sayi when c¢xi or else y;

else c

if K=V(K;, ..., gna
then return ;{Gi’ iy yi}where 2 =To;, y; = Ry
and for all ) X3 is"an instance of K:G; or if
no such triple exists HO [Eee the appendix
for a more detailed description of this case’
else -
if T = A{Tl, say T )
then return E?oi, %: 4 ¥i) where x; = Toj,
¥i = Koi and for a1l J T;0; is an instance
of y; or if no such triple exists NO [?e omit
specification of this case since it rums
parallel to the former casé]
else
{F T = W(Ty, ...y T)
then U; = ¢
for all T: do
U2:=INSTANCE(T;, K,, VR)
if U2#N0 thusU2= 7{0;, x{, y;} then
Ut = UU?fc-,To', yi}
if U = ¢ then return o eise return U

else
if X » AKys von,y K
then U: = §
for all K; do

vz: = INSTANCE(r, K;, VR
Lf U2 # NO then U: = WY [{o;, x;, Ko;)
else return NO.

As mentioned in the former section INSTANCE is call-
ed in INSURER after application of step 3.2. The
effectiveness of doing so was proven by the conjecture
of the second example in section 5:
(x)@y){A(Equal(x,nil) .., Without INSTANCE INSURER
will decompose this example into eight (8!) sub-
problems of which six are redundant. When INSTANCE

is incorporated the two non-redundant sub-problems
only remain. INSURER and INSTANCE can also be coupled

in another way as we will describe in the next section.

4. Interplay between INSURER, INSTANCE and COGITO
and what is to be desired.

INSURER, INSTANCE, COGITO and the predicate calculus
= conjunctive normal form translator - were embedded
in a 'fixed' regime. Input for the prover comsists
of axioms, supporting theorems, definitions and
the conjecture., For the next description we want to
remind that activation of the connection graph
theorem prover GOGITO should be pestphoned at all
costs.

Roughly a supervisor triggers the following acti-
vities:




If the conjecture is an instance of an
axiom, a theorem or an already proven
theorem (see step 2) then returm with
SUcCCcess.,
If the conjecture decomposes into the sub-
problems Cl, ..., Cn

then for each Ci go (recursively) tostep !

if the value returned for treating

Ci is suecesful
then add ¢i to the collection of
already proven theorems
else quit with failure
return with success.

If the conjecture contains a predicate de-
fined in one of the definitions them sub-
stitute for each occurrence in the con-—
jecture the instantiated body of the de-
finition %) and go to step 1.
Translate the axioms, supporting theorems
and the negation of the conjecture into
conjunctive normal form, call COGITO and
return the value returned by it. (COGITO
gets a resource parameter ensuring termina-
tion},

step 1!

step 2:

step 3:

step 4t

The results reported in the mext section have been
obtained with this, slightly different, regime,
Although this particular fixed connection between
INSURER, INSTANGE and COGITO makes sense and is
certainly effective we do not like it. We prefer
considering INSURER, INSTANCE and COGITO as being
members of a potentially larger family of deductive,
cooperating, independent specialists. This would
require the supervisor to be implemented as a multi-
processas scheduler, The overall structure would

be more transparant, making more easily addition

of a new specialist. Not having available language
as QLISP, INTERLISP and MAGMALISP prevented us of
doing so.

5. Examples

Our first example looks terribly simple but a
straightforward treatment after translation, by
COGITO had not yet found a contradiction after
generating 35 clauses. It consists out of only:
definition: (s)(t){SETEQ(s,t)+>(x){xes+>xct)} and
conjecture: {u){v){SETEQ(u,v)++SETEQ(v,u)}*
INSURER immediately recognizes that the conjecture
decomposes into two sub-problems of which INSTANCE
shows that one is an alphabetic variant of the
other.
Remains to be proven:
(u) (v){“SETEQ(u,v)VSETEQ(v,u}}-
After substituting away SETEQ with the definition
INSURER finds again two sub-problems and - surprise -
INSTANCE also finds that one is a variant of the
other.
Remains this time:
(u) (v){V(ayl) (ylevhyltu)

(Ty2) (y2¢vAy2eu)

(¥3(y3evwWy3fu)}-
Negating this conjecture and translating into
C.N.F. yields four clauses, The 2nd clause genera-
;ed by COGITC was already the ewmpty one. Generating
the non-solution with 35 clauses was 20 times more
costly than finding this solution,

%) Recursive definitions are not allowed

The next example was taken from /Green, 4/ and was
already worked on as reported in /Champeaux, 2/.
definition!

(x) () {R{x,y) (Same (x,¥)ASd(¥) ).

axioms:
(1) Gy (yy{sd(y)y+sd(merge(x,y))i,
(2)  (x)(y)(uy{(sd(y)ASame(x,y)}~ )
+Same{cons{u,x}, merge(u,y)}:,

(3) (xY{Equal(x,nil)sR(x,nil} ,
(4) (x){rEqual(x,nil)~+

+Equal (x,cons {car(x}edr{x)))},
(5)  (x){(u){v){(Equal{x,u)ASame(u,v)~Same{x,v)}"
conjecture:
(x) (Iy) { (Equal(x,nil)>R{x,y}}/

(((“VEqual{x,nil))h

R{cdr(x},sort{cdr{x))}r+
+R(x,¥)}}*

The conjecture - already mentioned in section 3 -
decomposes into two sub-problems of which INSTANCE
finds that one is an instance of axiom(3). The re-
maining sub-problem was solved as well as without
definition substitution (by adding the definition
to the axioms) as with substitution. In both cases
a contradiction was found more easily than in the
non—-decomposed case as can be seen from the g-
penetrance values in table 1.

program input + g-penetrance ‘
and generated :
strategy clauses !
i
QA3 [Green, &4/] 286 0.091

COGITO (plain}| 38 (25) 0.579 (0.680) ;
+ sub=problem ;
recognition 28 17) 0.785 ¢0,882) i
+ definition i

substitution 20 (12) 0.800 (0.917)

Table | Showing the effectivenes of INSURER and
INSTANCE, The numbers between brackets
refer to values obtained when the sorted
predicate calculus is used /Champeaux, 2/,
{The g—penetrance is defined as ¥ clauses
in proof /#(input+generated clauses).)

6. Summary

Two algorithmic {always halting) components from the
natural deduction realm are described. Both were im-
plemented and integrated as pre-processors with a
resolution type, connection graph theorem prover.
Examples are given that illustrate the augmented
power of this complex with respect to the sole
theorem prover,

Factoring out other algerithmie components and/or
adding plan/strategy generators to the pre-processor
family (possibly leading to multi-level search
/Sacerdoti, 7 /), we consider a more promising future
task than investing more intelligence deep inside
resolution and/or natural deduction theorem provers.

Excellent typing was done by Pom van der Horst.
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Appendix
We give here a more detailed description of the
sub~case
INSTANCE(T, V(Ki, ..., Kn), VR).
INSTANCE(F, V(K!, ..., XKn), VR}:=
INSORK( ({ (K1, ..., Kn){(B,T,8}))

So we have now to describe the procedure INSORK.
Its input consists of a non~empty list (Taskl, ...,
Taski, ...), where an element Taski is of the form:
{(Bm, ...Bn){c, ¥, (RL, ..., Rm-1})}, with

Rj=Kjo, T=Te. |T is already an instance with
respect to V(RE, ..., Em-1}],

xnsonx(g Taski):=

Newtask : =@
for each Taski do
U:=INSTANCE(T, Rm, VR)
if UENO thus U=U{Oj, X, yj}
then for each eleméent “of U do
NN:={(Rm+!cj, iy Rnci)

(o493, Xy (Rlaj, ceiy Rm'lﬁj»yj))}

Newtask:=NewtaskUNN
if Newtask={@ then return NO
if m=n thus all elements Ki have been treated

then U2:=p
for each element of Newtask do

(which have the form
{g,¢0, T, (R1, ..., Rn})])
v2:=u2u{o, T, V(R1, ..., R}

return U2

else return INSORK{Newtask).
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PARTIAL PROOFS AND PARTIAL ANSWERS

Philip Klahr
The Rand Corporation
Santa Moncia, Calif. 90406

Abstract

deduction

in many cases an automatic
proofs for

system cannot find complete
particular theorems, goals, or questions
requiring deductive support. In some
cases information nmneeded to complete
proofs 1is missing from the data base. In
other cases processing limits may have
been reached before proofs could be
completed. Rather than disregarding such
partial proofs as most systems do, the
DADM system displays them to users and
identifies subgoals that remain
unresolved. Missing information is given
in the form of partial, or conditional,
answers. Examples are presented to show
the value and importance of such partial
proofs and partial answers.

1. INTRODUCTION

automatic
unable to find a

In those cases when an
deduction system is
complete proof for a goal or theorem,
there is a pgood deal of valuable
{nformation available in the form of
partial proofs and partial answers that

could be given to a user. Such partial

information could provide the following
types of feedback:
1. The system could jdentify  what

information is missing and needed
to complete a proof.

2. The system could specify what
deductive paths it has taken in its
effort to find a proof.

3. 1f the system ran out of time, it

could specify where its processing
was interrupted.

In the case of missing information,
the wuser may supply the necessary
information to complete a proof, or at
least be aware of what information he

would need in order to obtain an answer,
Certain knowledge-based systems, such as
MYCIN [Shortliffe, 1976} and PROSPECTOR
(Duda et al., 1978], interact with the
user to extract from him needed
information during deductive processing.
This assumes the user has access to, or is
knowledgeable = about, the - domain under
consideration. Often times he 1s not.
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For example, he may be asking questions of
a particular data base about which he has

little knowledge. Giving him a
conditional answer (an answer conditional
on specified missing information being

and a partial proof may satisfy his
needs, as well as identifying  what
informational content is available in the
data base and what information is absent.

true)

In specifying what deductive paths
and proofs the system has considered, the
system becomes more transparent. The user
can see not only how the deductive system
operates, but he can also identify how the
system is interpreting his original query.
1t may be the case, for example, that the
system is exploring alternatives that the
user feels are inappropriate, or that the
user's formulation of the query was not
what he really intended. In the former
case, the user might be able to advise the
system on the use of rules or facts that
are particularly relevant. In the latter
case, the user may reformulate his query
to be more precise or consistent with the
terminology in the knowledge base.

exceeded its allowed
the user could similarly
examine the relevance of the partial
proofs being constructed. In this case
however, he may also be able to extend the
processing  limits so the system may
continue along fruitful paths.

1f the system
processing time,

This-paper demonstrates how partial

proofs and partial answers are given in
the DADM system [Kellogg et al., 1977,
1978], and how valuable they can be to a
user. The research described here is

derived from the original suggestion of
adding a conditional answer capability to

the CONVERSE question-answering system
[Travis et al., 1973}. We will briefly
overview the DADM  system, before
proceeding with a discussion of partial
proofs.

2. QVERVIEW OF BADM

DADM (Deductively  Augmented Data
Management) is a natural-deduction system
(Bledsoe [Bledsoe, 1977] reviews such
systems) designed to interface with

existing and emerging relational data base
management systems. To facilitate this




design cirterion, there is & distinction
and separation between rules and facts.
Rules (axioms, theorems, rule-based
knowledge) are in the form of predicate-
calculus implications and are used to
perform  deductions. Facts are single
literals containing .only constants
(predicates whose arguments contain no
variables), to be consistent with the form
of facts typical in relational data bases.

Another design criterion is that the
system should be efficient in dealing with
large numbers of rules. To this end, DADM
uses PATHFINDER {Klahr, 1975, 1978}, a
planning system designed to locate
relevant rules before rules are actually
applied in the course of constructing
proofs. PATHFINDER uses the process of
middle~term chaining to locate deductive
implication chains by combining forward
chaining from assumptions and backward
chaining from goals. This process may be
envisioned as one of generating expanded
wavefronts in the two directions. (A
recent proposal by Nilsson {Nilsson, 1977]
suggests a similar expansion 1in the
construction of fact and goal trees.) The
purpose of middle-term chaining is not to
construct proofs but to locate potentially
relevant deductive implication chains
through the rules.

Middle-term chaining does not operate
directly on the rules. It wuses a
predicate connection graph  which is
abstracted from the rules. The predicate
connection graph contains information
about the deductive connections
{(unifications) among the rules and
implication connections within rules.
(The connection graph is similar to other
theorem proving connection graphs, e.g.,
{sickel, 1876} and [Kowalski, 19751},
although here it is wused as a planning
tocl within a natural-deduction system.}
This graph is compiled when rules are
first entered into the system. Thus
during proof planning and proof
construction, the system has knowledge
about all the deductive interactions among
the rules and need not compute them
dynamically.

Middle-term chains form the basis of
the planning process designed to focus in
on potentially relevant rules, The
planning process forms skeleton proofs
whose variable substitutions remain to be
shown consistent throughout the proof.
This latter task is the function of the
verifier. Verification is delayed until
the system has planned out potential
proofs. The verification process examines
the variable substitutions involved in the
- deductions {unifications) of a proof to
test that no variable takes on conflicting
values {[Klahr, 1978}).
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A middie-term chain represents a
deductive implication chain through a
sequence of rules. The system then
examines these rules to determine if
subproblems exist. if subproblems do
exist, the system has three methuds
avajlable to resolve them:

1. Resolve a subgoal by deduction,
i.e., further application of rules
to prove the subgoal.

2. Resolve a subgoal by data-base
search, i.e., leave the subgoual! for
the data management system (DMS) to
search over the file of facts,

3. Resolve a subgoal by computation,
i.e., the predicate involved in the
subgoal has been' defined by a
computational procedure which gets
executed to determine the wvalidity
of the subgoal.

The particular method used 1is based
on the predicate involved in a subgocal.
If the predicate is defined Dby a
computational procedure, that procedure is
executed when the predicate occurs as a
subgoal. 1f the predicate is defined
primarily by its data-base values, i.e.,
knowledge about  the predicate exists
mostly in the fact file rather than in the
rules, the predicate is left for data-base

search. If a predicate is defined
primarily by the rules, it is resolved by
deduction. For example, the predicate

GREATER-THAN would probably be defined
computationally. The predicate ATTEND-
CONFERENCE might be a data-base predicate,
since information about the predicate is
typically known or available, rather than
deduced. On the other hand, the predicate
KNOWS-RESULT might be a deduce predicate,
since knowledge about who knows particular
results 1s not usually available in data
bases.

Each predicate has a "support
indicator” that tells the system what to
do with subgoals involving the predicate.
This indicator is set by the data-base
administrator (the person who enters rules
and facts into the system). Ideally, the
system should resolve a subgoal in any way
that it can. 1f a data-base predicate
cannot be resclved by data-base search,
then the system should try to deduce it.

However, frequent interaction between the -

deductive system and the DHMS may be costly
and time-consuming, particularly if they
exist at two different sites. Thus, in
the initial implementation of DADM, there
is only one call on the DMS, that being
when there are data-base subgoals needed
to complete a proof. DADM first discovers
a potential proof, then verifies the
proof, and then completes the proof
through the DMS (if needed).
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Thus the first 1type of  missing
jnformation, namely missing facts, is
identifiable when the DMS does mnot find a
subgoal in the data base (nor disconfirms
the subgoal). This follows neatly from
the system separation of rules and facts.

The other type of missing information
exists when & particular deduce subgoal (a
subgoal jdentified as requiring deductive
support) does not have deductive support.
This can occur for a deduce subgoal when
the system has exhausted its allowable
processing time or when there are no rules
that apply to the subgoal (i.e.. the
subgoal does not unify with any literal in
any of the rules). In the former casée,
the system is jdentifying a partial proof
it is working on when interrupted. In the
jatter case, it identifies dead ends in
partial proofs. But such dead ends may
still be meaningful, at least in
identifying the scope of the rules, i.e.,
what can be derived and what cannot. It
may also suggest other rules that may be
meaningful and appropriate to add to the
rule set.

It must be emphasized that DADM tries
to find complete proofs and answers., It
will find and display complete proofs
before giving the user any information
about partial proofs. Also, the system
does not find just one proof. 1t will
continue its deductive processing at the
user's request oOr until it exhausts its
processing limits. It is often the case
in real-world appiications that rules are
of various degrees of plausibility. Thus
several different proofs jeading to the
same conclusion will give much more
credence to the answer derived. It is
also the case that the system may be able
to derive additional ansSWers an
conclusions through alternative proofs.
Partial proofs are shown only after all
complete proofs (within processing limits)
are given.

Anr important concern in displaying
partial procfs is deciding which proofs to
output Lo & USer, particularly when the
system has generated a large number of
partial proofs. It is always the case€
that a partial proof is verified before it
is displayed. The deductions in a proof
must be consistent with one another in
terms of the variable substitutions
required. Those partial proofs that do
not successfully verify are ignored and
never shown. Any partial proof that does
verify may be of potential importance to &
user. The system should display partial
proofs that seem most relevant. The
primary concern {s thus the order in which
partial proofs are displayed.
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Two main methods are currently used
for ordering partial proofs, These
methods are actually used during proof
construction in the planning process
rather than after proofs are formed. Thus
the methods apply to construeting proofs
in general, partial or otherwise. These
methods involve the use of advice and
plausibility.

DADM allows a user to give advice on
the use of rules that he feels may be
particularly appropriate for deducing an
answer to a query, Furthermore, a user
may advise the system to key on particular
predicates that  may be appropriate
middle-terms for chaining. In addition to
problem-specific advice, a  permanent
advice file exists for storing general
domain advice which is accessed for each
query. Advice here is also on the use of
particular rules and predicates, However
the advice is invoked  when certain
specified conditions occur in the query.
Conditions can refer to certain predicates
occurring as assumptions or goals in the
query, and to certain arguments within
predicates, e.g., particular constants and
domain classes of variables, (DADM also
allows a user to specify negative advice.
In this case, advised rules. and predicates
are avoided in proof generation.)

Advice is transformed into rule and
predicate alert 1lists which are used
during middle-term chaining to order and
prune the predicates and rules used. The
system will try chaining through advised
predicates  and through advised rules
whenever it can. Advice thus serves as a
focus of attention mechanism for the
chaining and planning processes. Proofs

MOVED(Mike ,SF,LA)
t
|
!
1

using advised rules and predicates will be
generated and displayed first.

The use of plausibility  nmeasures
serves a similar focusing function. Rules
have plausibility measures associated with
them (similar to certainty factors in
HMYCIN iShortliffe, 1976)). During
middle~term chaining, rules are ordered
according to their plausibilities,
Resulting proofs will be generated and
displayed on the basis of the plausibility
of the rules used in the proof. Thus most
plausible proofs will be displayed first.
{(Note that  advice is given highest
priority in the generation oI proofs.)

A third method {(not currently
implemented} for ordering proofs concerns
the number of remaining subgoals in the
proof. This is particularly important for
ordering the display of partial proofs.
Since unresolved subgoals result in
conditionals in the partial answer, the
fewer the number of such conditionals, the
more valuable a partial proof and partial
answer will be to a user. Partial answers
are conditional on the missing information
being true, The greater the number of
conditionals, the less likely that all of
them would be true. Thus partial proofs
should be ordered actording to the fewest
number of remaining subgoals.

4, EXAMPLES
Suppose Mike is filling out his
income tax. He has recently moved from

San Francisco to Los Angeles, and wants to
know if he can claim moving expenses. A
partial proof is given 'in Figure 1.

i :
&(MOVED(x,y,z}, GREATER-THAN{(distance-between y 2),50-miles),

e E E m e e .. -

compute

- mm————- -

WORKS-IN(x,z,6-months)) => CLAIM(x,ME)
I

Variable-flow Classes: (Mike,x)

data-base

CLAIM(Mike ,ME)

(SF,y) (LA,z)

Compute Subgoal: GREATER-THAN{(distance-between SF LA),50-miles)

Data-base Subgoal: WORKS-IN(Mike,LA,6-months)

- Answer: yes if WORKS-IN{Mike,LA,6-months)

Figure 1,
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This example shows a

simple middle-

term chain through one rule from the MOVED

assumption to the
vertical
interactions
variables in the
universally
specifies

CLAIM goal. The
represent deductive
(unifications). The
rule are considered
quantified. The rule

conditions are necessary

lines

what

for someone to elaim moving expenses {ME}.

GCREATER-THAN has
compute predicate {note the
function
WORKS-IN has been jdentified as 3
base predicate.

are formed by the
variable
partial procf.

identified as &
computational
welll.

data-
The variable-flow classes

verifier and indicate
substitutions required in the
1n the example assume that

been

distance-between as

the computational procedure for GREATER-

THAN has been defined and that it
werue" for this subproblem.
that the DMS was
WORKS-IN

conditional

returns
Also assume
unable to resolve the
Consequently, a

subproblem.
answer 1is given.

(partial)

Thus, even though the system was unable to

Al:

Rl:

RZ2:

A2:

R3:

DAMAGED(Taurus,0il)
]
jul

&(DAMAGBDixl,xs), HOME-PORT{x1,x2})

----------------

DESTINATION(Taurus,NY,0i1)
]

lul

discover a complete proof, it <can still
display relevant and important
information.

Consider the more complicated partial

proof in Figure 3. The query asks if the
Taurus, with its o0il cargo, were damaged
(assumption Al) while destined for New

Vork (assumption A2}, are there any

ships

that could transpert the 0il to New York
{goal G). (For this example, variable
"typings" or semantic class restrictions,

e.g., X being a ship, are notl shown.
{MeSkimin and Minker,
1978] for such examples.)

The first middle-term chain

See

1977} and {Klahr,

involves

unifications ul and u2 through rule R3 (if

a ship is destined somewhere with 2

carge

and offloads the cargo somewhere else and

there are ships available there

ready,
cargo to the original destination).
subgoals result. READY-STATUS

=> RETURNS(xl,x2,%3)}
1

----------------

----------------------------

&(DESTINATION(x7,%8,%9), OFFLOAD(x7.,%9,%x10),
READY-STATUS (x11), AVALLABLE(x11,x10))" = TRANSPORT(x11,%9,x8)
t

-----------------

Variable-flow Classes:

Data-base Subgoals!

---------

---------

[]
data-base lu2
1

TRANSPORT{X,0i1,XY)

(Taurus,xl,xﬁ,x?) (0il,x3,x6,x%)
(NY,x8) {X,x11) (22,x5,x10)

HOHE-PORT(Taurus,xZ)

READY - STATUS (X)
AVAILABLE(X,x2)

Facts Found:
READY-STATUS(Pisces)

Updated Variable-flow Classes:

Conditional Amnswer:

Figure 2.
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HOME-PORT(Taurus.Freeport)

(Pisces,x,xll) (Freeport,x2,x5.x10)

Pisces if AVAILABLE(Pisces,Freeport)

that
then those ships <an transport the

ar«

Three
and




AVAILABLE are data-base predicates.
OFFLOAD is a deduce predicate. The second
middle-term chain is from the assumption
Al to the OFFLOAD subgecal and is shown by
the unifications uld, u4, ub, through rules
Rl (if a ship with cargo is damaged, it
returns with its cargo to its home port)
and R2 (if a ship returns somewhere, it
unloads its cargo there). BOME=-PORT
results in another data-base subproblem,

Verification of the partial proof is
successful. The variable-flow classes
combine the substitutions required by the
five wunifications in the partial proof.
Each wvariable-flow c¢lass specifies’ the
variables and constants that must be equal
for the deductions in the proof to be
consistent. Verification consists of
forming these classes from the
substitutions involved in the unifications
and determining if any variable is
required to take on conflicting values.
{(For example, a variable-flow class
containing two different constants would
indicate that the variables in that «class
must equal two distinct  values,
Verification of the proof would be
unsuccessful.) Those proofs or partial
preofs that fail to verify are disregarded
and not shown to the user.

Three data-base subgoals remain in
the partial proof in Figure 2. Their
arguments are updated relative to the
substitutions required by the variable-
flow classes. For example, the variable
x) in the HOME-PORT subgoal is in the same
variable-flow eclass as the  constant
Taurus. Thus x1 is required to be Taurus
in the proof. The constant is thus
substituted for the wvariable in the
subgoal before data-base search.

In this example, two facts were found
in the data base. The AVAILABLE subgoal
was not and consequently occurs as part of
the conditional answer. Note that if none
of the data-base subgoals were resolved,
the conditional answer would involve all
of these subgoals, i.e., those ships that
are ready and available at Taurus! home
port can transport the oil to New York.

Consider the wvery simple partial
proof in Figure 3, John originates some
result on learning called the Learning
Method (LM}, The query asks who knows
about this result. The single rule used
states that if a person originating a
result has scientific contact with others,
they will know of the result. The subgoal
SCIENTIFIC-CONTACT requires  deductive,
support. This is a partial proof since a
subgoal remains unresolved. The partial
answer that would be given  here is
SCIENTIFIC-CONTACT{w,John), i.e., those
who have scientifie contact with John
(know about LM).

i20

ORIGINATES (John ,LM)
]

&{ORIGINATES(xX,y),SCIENTIFIC-CONTACT (w,x})

=> KNOWS(w,y)
|
KNOWS{z,LHM;
Figure 3.

Suppose deductive processing stops at
this point., This could occur if no rules
deductively support the subgoal or if

processing limits were exceeded. DADM
distinguishes between these two
possibilities. The former is determined

if the predicate connection graph does not
show any unifications with the subgoal in
this proof. Otherwise, if unifications do
exist, further deduction is possible.

When deductive support  does not
exist, the user may decide that deductive
limitations exist in the set of rules.
This may lead him to suggest additional
rules concerning scientific contact, For
example, he may insert a rule stating that
people attending the same conference have
scientific  contact, or that people
visiting the laboratory in which an

individual works  will likely  have
scientific contact with that individual,
etc. Thus, such a partial proof may

identify missing information in the rules
and suggest the insertion of new rules.

I1f deductive support does exist in
the rules, the user may elect to have the
system continue developing this proof.
Time limits may be expanded, and the
particular proof specified for continued
deductive processing. 1f the user feels
this particular line of deductive
reasoning 1is inappropriate for what he
originally intended, he may be able to
specify that this proof is of no interest
to him and should be abandoned. The
interactive process between the user and
the deductive system would allow a user to
aid in an incremental development and
expansion of proofs, To this end, the
user could specify very low processing
limits to allow him to examine partial
proofs as they are being constructed, and
advise on directions for continued
deductive processing.

5. SUMMARY

Most deductive systems output only
complete proofs and answers in response to




Partial proofs are usually
ignored. Many partial proofs, however,
are relevant to deducing an answer Lo a
query but have not been completed because
of missing - information or because
processing 1limits have been exceeded., We
have argued that such partial proofs and
the resulting partial answers can be of
significance to users for the following
reasons:

input queries.

1. TIdentify what deductions the system
has discovered to show a user how
the system interpreted his original
query.

2. Allow a user to participate and aid
in the construction of proofs by
letting him examine proofs under
development and allowing him to
advise and select potentialy fruit-
ful deductive paths,

3. Identify incomplete knowledge about

particular predicates either in the

~data base of facts or in the set of
rules.

4. Identify what information is needed
to complete existing partial proofs
and to give complete answers.

The DADM system plans skeletal proofs
in an effort to find potentially relevant
rules needed to answer queries. Middle-
term chaining focuses on finding deductive
chains leading to the desired goal or
query. Subgoals are set up to be
resolved. When such subgoals cannot . be
resolved because of missing information,
partial proofs and partial answers are
given.

partial proofs are not  ignored or
disregarded because they represent proofs

in progress. {DADM aborts only those
proofs that fail to verify.) When the
deductive processing is completed, these

partial proofs are accessible and often
valuable. Deduction systems should give
the user as much information as it can or

as much as is desired. They should be
transparent and user-oriented. The
approach taken here is a step in that
direction.
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ABSTRACT., A structure is described for economical~
ly implementing a theorem-prover based on deduction
plans. In this structure each well-formed
expression is represented only once and is shared
by the proof-buildimg, unification, and backtrack-
ing mechanisms.

1. Introducticn

Because the space searched by thecrem-proving
programs is so large, one of the major problems
that has plagued mechanical theorem-provers is lack
of storagé space. In particular, the early imple-
mentations of the resclution principle [12] using
"level saturation' search were swamped by the pro-
liferation of data. Their failure led to the
introduction of many strategies for limiting the
size of the search space [5,11}. Unfortunately,
little improvement was obtained.

In the conventional list or string representa-
tion for clauses in proofs, much information is
repeated. For example in the resclution:

P(X), Q(x) 'Q(f(Y)): R(z)

P(£(y)), R(y)

the underscored literals P{x) and P(f(y)}), although
not identical as strings, are essentially the same
logical entity, as are the doubly underscored
literals R(y) and R{y). Structure-sharing schemes
such as that proposed by Boyer and Moore {4], solve
the storage problem associated with such repetition;
howaver, they do not eliminate the repetition since
the repeated literals exist virtually in such
representations, Several deduction systems have
been proposed in which literals are not repeated
[2,3,13,14). 1In each of these systems, however,
unification is handled in the conventional way, so
the representational economy of the proof structure
is eclipsed by the wastefulness of the unification
algorithm.

In (6,7] a procedure is described which
constructs & proof by building a graph in which no
literals are repeated. In this procedure no
unifiers are calculated, no substitutions are

‘ This research was supported by Natural Sciences
and Engineering Research Council of Canada grant
A3025, and was performed while the author was with
the Department of Computer Science, University of
Waterloo, Waterloo, Ontario, Canada.

applied, and when unification failure makes back-
tracking necessary, a tracing algorithm determines
the source of unification failure so that back-
tracking 1s exact rather than exhaustive. Althoush
{6,7} mention the economy of graphical proofs,
they do not discuss the further economy which can
be obtained in implementation by sharing structure
between the proof-building, unification and back-
tracking mechanisms, In this paper, we describe
such a shared structure: the key idea is that each
well~-formed expression is represented only once.

2, The proof procedure

In this section we describe the construction
of proofs, unification, and backtracking. For the
sake of brevity, this description is incomplete
and informal: for details see [6,7,8].

Throughout this paper we use most words from
the literature of theorem-proving and graph-theory
with their standard meanings. We do, however, use
"expression" or "well-formed expression' to refer
to those objects usually called "terms”, as well
as ‘those usually called "literals". We also use
"term" to mean an expression which is not simply a
variable, and "symbol" to mean either a predicate
symbol or a fumction symbol.

2,1 Deduction plans

The underlying structure of a deduction plan
for a set £ of clauses is a rooted tree the root of
which is a special vertex called TOF, Every vertex
other than TOP is a variant of some literal in
some clause of £. This underlying rooted tree
corresponds exactly to a linear resolution deduc-—
tion from § in which the only inference rule is
binary resclution [10}. The rule used in building
such a tree is called "replacement". Replacement
is incomplete by itself, so we have two further
rules, “factoring" and "reduction' which ensure
completeness.,

2.1.1 Example Consider the set of clauses:

g = {{P(x,y), P{x,£(x)), -0(x}},
{Q(x)l R(x)a)! -S(x)}t
{s(x), a(x)},

{’R(x: )') ) "S(Y)} 3
{-P(x,f{a))} }

where a is a constant, Figure 1 is a plan for this
set of clauses. The first step in constructing
this plan consists of selecting a clause (the "top
clause™) from € and building the graph with TOP and
+hn literals of the top clause as vertices, and
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with arcs labelled wgyp" from TOP to each of the
other vertices. SUB stands for "subproblem” and
indicates literals to be removed by replacement,
reduction or factoring. Each arc labelled “REPL"
{ndicates one application of the replacement rule,
and shows that we have gelected a variant ¢ of
some clause from #, and have performed a binary
resclution on the subproblem at the tail of the
arc, using the 1iteral of ¢ which appears at the
head of the arc., The remaining literals of ¢ are
then introduced as new subproblem vertices at

the head of new SUB arcs! the tail of each of these
new SUB arcs is the head of the new REPL arc. In
figure 1 the REPL ares are numbered, indicating
the order in which the underlying rooted tree is
congtructed. A linear proof may be constructed by
performing the equivalent binary resolutions in
this order. Arcs labelled UpEp” and "FACT" indi-
cate applications of the reduction and factoring
rules. A subproblem is sald to be "open' if there
are no arcs leaving it. Vhen using plans to
establish unsatisfiabllity, the aim is to obtain

a plan with no open subproblems: such a plan is
said to be "closed", and is equivalent to the
empty clause in a resolution proof.

So far, we have gaid nothing about unifica-
tion, but it is clear that to validate an applica-
tion of replacement or reduction, we must show
that the literal at the head of the REPL or RED
arc is unifiable with the negation of the literal
at the tail. Similarly the 1iterals at each end
of a FACT arc must be unifiable. We call each
such pair of expressions to be unified a
“eonstraint”. Of course, we cannot simply unify
each comstraint: we must show that there is a sub-
stitution that simultaneously unifies all the
constraints arising from the construction of &
plan.

2.2 Unification

The unification algorithm operates in two
stages. The first stage consists of an algorithm
which manipulates three sets: a set of constraints
S which is initially C, the input set of cons-
traints; a set F which is a partition of the set
of all expressions occurring in C; and 8 set P
which is a partition of the set of all terms occur-
ring in C. F and P are initially the partitions
in which each class has one member. The algorithm
deletes a constraint from S, merges the classes in
¥ which contain the expressions in this constraint,
and merges P-classes in the newly created F-class
if they contain terms beginning with the same
symbol. Finally, for each pair of P-classes
merged, one term from each is selected, say
f(tl,...,tn) and f(sl....,sn). and the constraints

{tl,sl}....,{tn.sn} are added to 5. These actioms

are repeated until § is empty, at which time the
algorithm halts having produced partitions FOUT

and POUT

we denote by [p} and <q> respectively, the class

{ -
n FOUT containing p and the class in POUT contain

ing q. It happens that each class of POUT is

, 1If p is an expression and q is a term,

entifely contained in some class of Foug’ and if
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[p] = [q} where p and q are terms beginning with
the same symbol, then <p> = <g>.

2,2,1 Example Given the set of constraints!

él: HICRS D Gi(s,z)}
£2: {u, F(y.G(s.z))?

g1 {FHM), 6(x,1)),s v}
tk: {u,v}

£5= {v, Fly,y}}

LA

The algorithm produces the partitions:

T = {{y

out Gls, 2}, GV Fly:¥} ), Gix,T)

H(W)}l

{u,vy8,2,%,T .
F(R(w), G{x,1)), Fly,G(s,2)}, F{y\¥)}

{w}}

Pour ° {{6(s,2), G{V,E(y,¥)})s G(x,1)},
fH(w) ], .
{F(H(W)s G(x,r)), F(y!G(s!z))l F(Y.}'):‘-”

In the second stage of unification, a direct-
ed graph U, called the "unification graph”, is
constructed, the vertices of which are the classes
of FOUT' Figure 2 shows the pnification graph U

for the set of constraints of example 2.2.1: the
reader should investigate this graph to discover
how the arcs of U are constructed.

1
The main result concerning FOUT' POUT and U

is that a set of constraints C 1s unifiable iff
every class of FOUT eontains at most one class of

P and U has no cycles. Note that the set of

OUT
constraints of example 2,2.1 fails to be unifiable

for both reasons.

2.3 Backtracking

Having found that the set C of constraints is
nonunifiable, we need to determine which cons-
traints must be removed in order to ensure unifi~
ability of the remainder. To do this, we investi-
gate a directed graph A cslled the tgytomaton for
¢", Figure 3 illustrates the avtomaton for the
get of constraints of example 2.2.1. The vertices
(states) of the automaton are the expressions
occurring in C, and again we guggest that the
reader determines how the arcs are constructed by
inspecting figure 3. This graph can be inter-
preted as a nondeterministic pushdown autematon
if we regard esach undirected arc as a8 transitien
in either direction under the input symbol
{constraint name)} which labels the are; and if we
regard each directed arc as & transition under
empty input in which the arc label is pushed on
to the sutomaton's stack if the transition is in
the direction of the arrow, oF popped from the
stack if the transition is against the arrov. 1f
there is some word b {i.e. sequence of constraint
names} under which the automaton can reach state
q with empty stack starting from state p with
---ty stack, then p and q are gaid to be attached




{by b). Also, if there is some word b under which

the automaton can reach state p with nonempty stack
starting from p with empty stack, then A is said

to have a loop on p (with value b)., The important

connections between A, FOUT and U are: [p] = [q]

i1ff p and ¢ are attached by some word; and U has a
cycle containing arc ([pl, £, [g]) iff for some
term t in p beginning with f, there is a loop on t
in A, Clearly, if p and q are attached by some
word b, and some constraint named in b fs removed
from €, then p and g will no longer be attached by
b in the automaton of the reduced constraint set.
Similarly we can remove a cycle from U by deleting
some constraint named in the value of the corres-
ponding loop in the automaton, Using the automaton,
we can therefore find all unifiable subsets of a
set of constraints which are maximal with respect
to unifiability. First we find all paire of terms
{p,q) in different classes of POUT but in the same

OUT; then find all words which attach p

and q in A. Next we find all cycles in U and the
values of the corresponding loops in A. From each
of these words we create the Boolean expression
which is the sum of the constraint names occurring
in the word. We then simplify the product of these
sums to the sum of products in which no product
subsumes another or contains a repeated constraint
name. If we remove from the original set of
constraints all those constraints named in one
product of this “covering expression", the remain-
ing set is unifiable and s maximal with respect to
this property. For the set of constraints of
example 2.2,] we obtain:

class of F

Terms Attached by
H(w), G(s,z) £3d4£554£2
£3€,05E5E,6)

LORIR RN NNN NN
Eof bt boty

3747575
H{w), G(x,r) £3£2£5¢4£3
£38, 8585005
Terms Loops
Fly,y) £16,8,6
F(H{w), G(x,r)} none
£2£4£1

From these words we obtain the covering
expression £4+£1-£3+¢1-¢5+¢2-¢3+¢2-¢5 g0 the meximal

unifisble subsets are: {¢1,¢2.¢3.¢5}.{ﬂz.ﬁﬁ,ls},
{ézié.s: ‘4}’{¢13 £b9¢5}r {dll t3l£41 .

If each constraint in a nonunifiable set of
constraints arising from a deduction plan has
associated with it those arcs in the plan which
introduced 1it, then clearly for each maximal uni-

-fiable subset, we can determine how the plan must
be pruned in backtracking.

3. Data structure

We now outline a data structure for implement-
ing the above procedure. This is not intended to
be a detailed description of a structure which may
be directly implemented, but an informal descrip-
tion of the basic requirements. We are not concern-
ed with the details of the algorithms for manipula-
ting the structure, and hope that it is clear from
the description given in section 2, how these
algorithms might operate. When necessary we will
discuss algorithms in general terms to clarify
certain points about the structure.

In order to describe the elements of our
structure, we use the common representation con-
sisting of a string of boxes which corresponds to
a set of contiguous memory locations in a machine,
In defining an element we specify its type and
for each box in the element, we give a name and
specify the type of data the box may contain. When
it is impractical tec draw the contents of a box
physically enclosed in the box, we will indicate
its contents by a pointer; this is again a standard
device which reflects the realisation of such
structures in a machine. Having stated that a
particular box in a particular element must contain
data of & certain type, we relax this restriction
for the element of type list which has the form:

‘member next
' (st}

The second box has the name "next" and must contain
an element of type list: the first box has the name
“member" and may contazin any type of data; however,
when & box A in some element contains a list
constructed using list elements, the type of data
in the "member" boxes of these list elements is
specified in the definition of box A.

Throughout our explanation, we will introduce
abbreviations for various structures in order to
simplify subsequent diagrams. In these abbrevia-
tions some elements are collapsed to single cells:
a pointer which originates in some box of such an
element will be identified by being labelled with
the name of the box., The single cell of a
collapsed element will contain the type of the
element.

As we have already mentioned, the important
property of our structure is that each expression
is represented only once, Consequently, an
expression must be represented in such a way that
it can be readily investigated by each part of the
theorem-prover. To the plan-building mechanism the
structure of an expression is largely irrelevant
since expressions (literals) are merely names for
vertices, and the applicability of a particular
deduction rule is verified by the unification
algorithm., In practice, of course, the plan build-
er should at least check the predicate symbols of
the literals involved. When the algorithm which
performs the first stage of unification merges
two classes of P represented by f(tl,.,.,tn) and
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{t must have access to the express-

f(sl,...,sn),
coraBy {n order to build the new

tons tl""'tn’ 8yr

constraints {tl,sl},...,{tn,sn}. It must also be

able to find the classes in F and P to which an
expression belongs. Finally, as states in the
automaton, expressions must be connected by "push"
transitions and by "{nput" transitions correspond-
ing to the constraints introduced in plan-building.

To represent expressions by a structure gatis-
fying these requirements, we define two data types
as follows:

expression:
rame push pop trans Felass Pelass
(symbal} | (pashlist) | ¢ pushlist) tyeny i) | (Eclass) {expression}
pushi
labsd head it
(symbot & | (ommssion} | (eanisssion)
integer)

For example, the representation of the
expression P, £(x),£{y)) 18 shown in figure 4(al).
Note that empty boxes in an element are crossed,
and that the “name" box of an ression element
corresponding to a variable is empty since names of
variables are never used. The use of the Y"rans",
"polags” and "Fclass” boxes of the expression
element will be {liustrated later.

We will henceforth use an abbreviated represen-
tation for the structure for an expression. The
abbreviated form of figure 4(a) &5 shown in figure
4(b}. In this and future sbbreviated forms we
adopt the conventions that an element corresponding
to an arc of the plan, automaton or unification
graph is represented by a dotted line connecting
the elements which represent the ends of the arc,
intersecting an oval containing the type of the
element representing the Bre.

The elements of type push correspond to the
push transitions of the automaton, and may be
traversed in either direction as the automaton is
investigated. Also, duting unification, the sub-
expressions of an expression may be located using
the appropriate push transitions.

The input transitions of the automaton are
represented in our gtructure by elements of type
trans defined by:

trans:
fabel end! endl
(exnression) | {esnsession)
tist )
Suppese, for example, that the automaton has

one between f(a) and fix)
in the

two input transitions:
introduced by the construction of arc Py

plan, and one between £(a) and x introduced by the
- construction of arc pl and also by the construction

of p,. This is represented as in figure 5(a), end
p
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figure 5(b): in both dia-
proofstep elements

in abbreviated form in
grams, Dy and Py stand for the

which represent p, and Py

The "Fclass" and tpelags" boxes of an gxpress-
jon element are used to maintain the partitions F
and P. In the description in pection 2, no varia-
bles occur in classes of P: however, in order that
expressions may be treated uniformly in our
structure, all the variables in & class of F are
considerad to comprise a class of P. The data
type Felass is defined as follows:

Felass:
Lanrs

(arg fist)

member

list}

Classes in P are maintained as balanced trees
using pointers from the "pelass' boxes of

expression elements [1]. For example, figure 6
{llustrates a representation for the partitions

F = {{x.el.ez.e3}, {Y,EA}}
P = {{el,ez,e3}, {eA)}

The expression elements are labelled with the
expressions to which they ecorrespond.

The "Uarcs" box of am Felass element is used
to point to the list of all arcs of U which leave
the class of F. An arc of U is represented by an
element of type arc:

labe!
(symbol}

tail bead
(Echus ) | (Eslass}

The unification graph of figure 7(a) for
example has the representation given in 7(b) and

7{e).

Finally we define two data types for repre~
genting plans.

subproblem:
name oHgin dependents solution
(exnzssion) | (pupotaien) (numﬁ%a (neapfsicp )
)5t}
proofstep!
head selected
wpe Lait subprobiem Ttera)
» . g or ppesl
(re%r.,&n:,} ¢ subproblem) Mﬂ,gﬂlmm (eapression}
1

For example, the representation of the plan
of figure 8{a) is shown in figure B(b), and its
abbreviated form in figure 8(c). 1In these diagrams
etc. stand for the expression elements

corresponding to these expressions. HNote that
there is no element corresponding to the TOP vertex
of the plan, and that SUB arcs are not represented.

LRLOYRLE

4. Concluding remarks

The data structure described above 1s a very
simple version of one currently being developed for
a theorem-proving prograth Obviously, many things




are miseing from the above description: no mention
has been made of constraints, for instance, nor of
the form that input clauses should have, Also,
wmany features of the structure as described are
computationally inefficient; for example, the
liberal use of lists built with the list element.
We hope, however, that the structure described
gives the reader an idea of the representational
economy of the structure being implemented.

References

[1]

2]

[31

[4]

{5]

[s]

[7]

{8]

9]

fio]

f11]
(12]

(13}
[14}

Aho, A.V., Hopcroft, J.E., and Dliman, J.D.,
The Design and Analysis of Computen Algonithms )
Addison-Wesley (1975).

Andrews, P.B., Rejufatlions by Matings, IEEE
Transactions on Computers, vol. C-25, no.B8,
801-807 {(August 1976).

Bibel, W. and Schreiber, J., Proof Search in
a Gentzen-Like System of Finst-onden Logde,
Proc. of International Computing Symposium,
205-212, North-Holland (1975},

Boyer, R.S., and Moore, J.S., The Sharing of
Structune in Theorem-proving Proghams in
Machine Intelligence 7, 101-116, John Wiley
and Soms (1972).

Chang, C. and lLee, R.C., Symbolic Logic and
Mechanical Theonem Prouing, Academic Press
{1873).

Pix g0

Cox, P.T., A Graphical Proof Procedure fon
First-onder Logdic, Proceedings of a Conference
on Theoretical Computer Secience, 230-238.
University of Waterloo, Waterloo, Ontario
(August 1977).

Cox, P.T., Deduction Plans: a Gaaphical Proof
Procedune fon the First-onden Predicate
Caleulys, Ph.D. Thesis, Department of Computer
Science, Research Report C5-77-28, University
of Waterloo (1977).

Cox, P.T., Locating the Sounce of Unification
Faifure, Proc. of Second Natl, Conf. of Cana-
dian Soc. for Computational Studies of
Intelligence, 20-29, Toronte (July 1978).
Gotlieb, C.C,, and Gotlieb, L.R., Data Types

¥y H
[Gls.z) Giv.Fiy.pi). Gixrl)
{H{wh

F

WY, nnLxr
(FLHIwLG s}l Fly.Gls.2)), Fiy.ph

and Stwctunes, Prentice-Hall (1978).
Loveland, D., A Unifying View of Some lineax
Henbrand Procedunes, J. ACM 19, no.2, 366-384
(1972},

Nilsson, N.J., Problem Scfuing Methods in
Artificial Intelligence, MeGraw-Hill (1971},
Robinson, J.A., A Machine Oniented Logic Based
on the Resofution Principle, J.ACM 12, no.l,
23-41 (1965).

Shostak, R.E., Refufation Graphs, Artificiel
Intelligence 7, 51-64 (1976).

Sickel, S., A Seanch Technigue {for Clause
Interconneetivity Graphs, IEEE Transactions
on Computers, vol.C-25, no.8, 823-835

{August 1976),

126




/‘m

/
fapressaan

Py

SR

Figure 5(a
-m_rm_inn _— "---mk‘

4 name @9
7
! Py
i f ’
{ /4 k
/
: S
e
@ : > (1 -
| ¢ erpretsion
\\ l,
Y /
5 /
@ Figure 5(b)
€ I Gprsion eZ' C‘DM
epresvion

gapuession

$IRIEAIDT

espression

127




Figure 7(b)

Figure 8{a)

&y

Y
proshies ,f \\
\ i h! !
e/ / \ i
\ ! 3 !
\ '] Y -f
fact \ ! 3 {
\ g
febprobiem l gubprabiom I
mw‘]’ ganu

Figure 8(c)

128




A DEODUCTIVE APPROACH TO PROGRAM BYNTHESIS"

by
Zohar Manna and Richard Waldinger
Computer Sclence Dept. Artificlal Intelligence Centar
Stanford University SR! International
Stanford, CA Menlo Park, CA

ABSTRACT

Program synthesis is the systamatic derlvation of & program from given specification. A deductive approach to
program synthesis is presented for the construction of recursive programs. This approach regards program
synthesals as & thecrem-proving task and ralies on & theorem-proving method that combines the features of
transformation rules, unification, and mathematical induction within a single framework,

MOTIVATION

The early work in program synthesis relied strongiy on mechanical theorem-proving techniques. The work of
Grean [1960] and Waldinger and Lee [1g69]). for exampie, depended on rasolution-based theorem-proving;
however, the difficulty of representing the princlple of mathematical induction in a resolution framework hampered
these systems In the tormation of programs with iterative or recursive loops. More recently, program synthesis and
theorem proving have tended to go thelr separate ways. Newer theorem proving systems are able to perform
proots by mathematical Induction (e.g., Boye! and Moare [1876]), but are useless for program synthesls because
they have sacrificed the ability to prove theorems involving axistentie! quantifiers, Recent work In program
aynthesls (8.g., Burstall and Darlington [1677] end Manna and Waldinger [1877]), on the other hand, has abandoned
the theorem-proving approach, and has relied instead on the diract application of transformation or rewriting rules to
the program's speclfications; In choosing this path, these systems have renouncad the use of such theorem-preving

techniques as unification or Induction.

in this paper, we describe & framework for program synthesis that again relias on & theorem-proving approach,
This approach comblnes techniques of unification, mathematical induction, and transformation rulas within a singie
deductive system. We will outline the loglcal structure of this system without consldering the strategic aspects of
how deductions are directed. Although no Implementation exists, the approach |s machine-orlented and ultimately

Intendad for implementation in automatic synthesis systems.

in the next sectlon, we wil glve examples of specifications accepted by the system, In the succeading
saections, we explain the relation between theorem proving and our approach to program synthesls, This paper Is an
abbreviated version of a Stanford University and SRI Internationat technical raport that includes more detailed

discusslon and some complets examples to Hlustrate the appiication of the method.

SPECIFICATION

The speclfication of a program allows us to express the purpose of the desired program, without Indicating an
aigorithm by which that purpose Is to be achleved. Specitications may contaln high-levet constructs that are not
computable, but are close to our way of thinking. Typically, speclflcations involve such constructs as the
quantifiers for all ... and for seme.., the set constructer {x: ..}, and the descriptor find 2 such that. . ..

For example, to specify a program to compute the integer aquare-root of & nonnegative integer n, we would write

sqri(n) <n  find z such that
integer{z) and 22 5 n < (e 1)?
where integer(n) and 0 s 1.

Hare, the input condition

integer(n)and 05 n

expressas the class of legal inputs to which the program Is expectad to apply.

e

T his research was supported (n part by the Natione! Selence Foundation under Granis MCST6-83655 and MCS78-02591,
by the Office of Naval Research under Contracis NODO14-76-C-0687 and NOOOI4~75-C-0816, by the Advanced Research
Profects Agency of the Department of Defense under Contract M DAS0S-16-C~0206, and by ¢ grant from the United States—

lsrael Binatlonal Sclence Foundation.
129




The output condition
Integer(z) and 2% s n < (241)?
deacribes the reiation the output z Is intended to satlsfy,

Simllarly, to describe a program to flnd the last elemant of a nonampty iist {, we might write

lastl) <m  find 2 such that
Jor some y, [ ®» yo>[z]
where Eslise{l) and | » [).

Here, u<>y denotes the resuit of appending the two lists v and v; [u] denotes the list whose sole element is u; and
[] denotes the empty iist. (Thus, [A B C]<>[D] yields [A B C D}; therefora, by the above specification, {ast([A 8 C

D)) = b

in general, we are conaidering the synthesis of programs whose specifications have the form

fa) <u find 7 such that Ria, 1)
where Pla).

Thus, in this paper we limit our discussion to tha synthesis of applicative programs, which yiald an output but
produce no side effacts. To derive & program from such & spacitication, we attempt to prove a theorem of the form

for all a,
if Pla)
then for some z, Ria, 1)

The proof of this theorem must be constructive, In tha sense that it must tell us how to find an output z satisfying
the dasired output condition, From such a proof, & program to compute 1 can be axtracted.

BASIC STRUCTURE

The baslec structure employed In our approach is tha sequent, which consists of two lsts of sentences, the
assertions A\, A, ..., Ay and the goals Gy, Gy, ..., G,. With aach assertion or goal there may be assoclated an
entry callad the ourput expression. This output entry has no baaring on the proof Itself, but records the program
aesgmant that hes been constructed at each stage of the derivation (cf. the "answer literal" in Green [18681).

The meaning of a sequent is that If ali Instances of each of the assertions are true, then some instance of at
loast one of the goals is true; more precisely, the sequent has the same meaning as Its associated sentence

iffor ol X, Ay and
Jor ali B, Ay and

Joraoll%, A,
then for some X, G, or
for some ¥, Gpor

+

Jor some X, G,

whare ¥ denotes ali the frae variables of the ssquent. (in general, we will denote varisbles by u, v, w, ..., z and
constanis by e, b, ¢, . . , 0.} If some Instance of a goai Is true (or some Instance of an assertion Is fafse), the
corresponding Instance of Its output exprassion satisfies the given spaecification. Note that the variable names in
the sequent are "dummys;" we can systematicslly rename the variables in any of the assertions or goals, and the
corresponding output exprossion, without changing the meaning of the sequent.

The distinction between assertions and goals Is artificlal, and does not increase tha foglcal power of the
deductive system, In fact, if we delete a goal from a sequent, and add Its negation as & new assertion, we obtain
an aquivaient sequent; simliarly, we can delste an assertion from a sequent, and add Its nagation as a new goal,
without changing the meaning of the sequent. This property is known as duality. Mevertheiess, the distinctlon
betwean assertions and goals makes our deductions easier to understand.
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it inltially we are glven the apecification

fla) <= find z such that Rie, 1)
where Pla),

weo construct the Initial sequent

assertions goals ouf pul

Pla)

Rie, 2) £

In other words, we assum8 that tha Input condition Pla) Is tue, and we want to prove that for some z, the goal
Ria, z)Is true; i so, z reprasants the desirad output. Guantifiers have baen removed by the usuai skoiemization

pracedure (see, 6.0, Niisson [1871)).

The input condition Ple) is not the only assertion In the sequent; typlcally, simple, basic axloms, such as u = u or
uww » ], are represanted as assertions that are tacitly present in ali sequents. Many properties of the aubject
domaln, however, are rapresanted by other means, as wa shall see.

The system operates by causing new assertions and goals, and correspending output expresslons, to be added
to the sequent without chenging (ts meaning. Each time a substitution Is made for & variable in an assertion or goal,
the same substitution s applied to the corresponding oulput axpression, The process ;ermlnates it the goal true (or
the assertion falsc) is produced, whose cotresponding output expression consists entirely of primitivas from the
target programming language; this expression is the desirad program.

In the ramalnder of this paper we cutline the deductive rules of our aystem.

SPLITTING RULES

The splitting ruies allow us to decompose an assertion or goal Inte its logical componants. For exampie, if our
sequent contains an assartion of form F and G, we can introduce the two assertions F and G Into the seguent

without changing its meaning. We will cail this the andsplif rule and express it In the followling notation:

the andsplit rule

assertions goals outpul
Fand G ¢
=E=_=== ]
r '
a ¢

We have an analogous orsplit rule for goals, and the ifsplit rule

assertions goals euf put
if F then G t
SRR
F
¢ .

Note that the output entries for the consaguents of the spiitting rules are exactly the same as the entries for thalr

antecedents,
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TRANSFORMATION RULES

Transformation rules allow one assertion or goal to be derived from another. Typlcally, such rules are expressed
as conditional rawriting rules: '

Tes {fP

meaning that a subexpression of form 7 can be replaced by the corresponding expression of form s, provided that
the condition P holds. We never write such a rule unless r and s are agual terms or equlvalant sentences,

whenever condition P hoids. For exampie, the transformation rule

u€v = u-=headw)or u€talllv) i islist{v) end v =[]

axpresses that an element belongs to a nonempty #ist if it equals the head of tha iist or belongs to Ita tail. The rule

uf) w frue  if integerfuyond u v 0
axpressaes that every nonzero Integer divides zero.

If & rule has the vacuous conditlon fru¢, we write It with no condition; for example, the logical rule
Qand true = Q
and the list ruie
Aead{uww) = u
may be applied to any subexpression that matches their left-hand sides.
A transformation rule

re s fP

does not parmit us to repiace an expression of form 5 by tha corresponding expression of form r when the condition
P helds, even though these two expressions have the same values. For that purpose, we would require a second

rule

t=r if P
Asaertlons and goals are atfected differently by transformation rutes. Suppose

rm s {fP

is a transformation rule and F{r’) Is an assertion such that Its subexprassion r’ is not within the scope of any
quantifier. Suppose also that there exists & unifier for r and r', {.¢., & substitution § such that r® and r'# are
idantical. Hers, r6 danotes the result of applying the substitution § 1o the expression 7. We can assume that 8 is a
"most general” unifier {In the sense of Robinson [1965]) of r and r', (We renama the variables of F(r'), If
necessary, to Insure that it has no variables in common with the transformation rule.) By the rule, we can conclude
that if P@ holds, then r& and 9 are aqual terms or esquivalent sentences. Tharefore, we can add the asaertion

If P8 then F(s)0
to our sequaent.
For example, suppose we have the assertion
selandaw 0
and we apply the tranaformation rute
wEy = uwhead(vhoru € falily) if ishistlv) and v » {],
taking r’ to be a € 2 and £ to be the substitution [ 1k » a; v = { J; then we obtain the new assertion
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if tslist{l) and L # []
then (o = Aead(i) or a € ralli} and a » 0.

in general, if the glven assartion F(r’) has an assoclated output entry f, the new ouiput entry is formed by
applying the substitution & to {. For, suppose some instance of the new assertion "if PO then F(:5)0" is false; then
the corresponding Instance of PO is true, and the corresponding Instance of Fis)0 |s faise. Recall that F{r}¥ and
F(r")0 are |denticat. Then, by the transformation rule, the corresponding instance ot F(nB, i.e. of F(r'}f, s false.
We know that if any Instance of Fir'} is faise, the corresponding instance of ¢ satisfies the given specification.
Hence, bacausa some instance of F(r)0 is false, the correaponding instance of t8 Is the desired output.

In our deduction rule notation, we write

assesiions goals outpur
F(r') !

=
{f PO then F(5)f I

The corresponding dual deduction rule for goals is

assertions goals out put
Fir") t
Tt e
P6 and F(3Y 10

Transformation rules can aiso be applied to output entrias In an analogous manner.

For exampie, suppose we hava the goal

alz and bz a+l

and we apply the transtormation rule
ul0 = rrue if integer(u) and u » 0,

taking r’ to be ¢z and 8 1o be the substitution [ z « 0y u » a ]. Then we obtaln the goal

{integerie) and a » O} and O&l
{true and bj0)

which can be further transformed to

Integer{a) and a « 0 and 5[0 i

Note that applying the transformation rule caused & substitution to be made for the occurrences of the variable z in
the goal and the output entry.

Transformation rules need not be simple rewriting rules; they may represent arbitrary procedures. For example, 7
could be an equation f(x) = g, 5 could be its solution x = ¢, and P could be the condition under which that solution
applies, In general, efficlent procedures for particular subtheories meay be represented as transformation rules
{sce, 9.9, Bledsoe [1877]) or MNelson and Oppen {1878].) Transformation rules can aiso play the role of the
wantecedsnt theorems" and "consequent theorams® of PLANNER {Hewitt (1871
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RESOLUTION

The original resclution principle (Robinsen (1965]) applied only to a sentence In conjunctive normal form.
Howaver, the ability to deal with aentences not in this form Is assential I ‘resolution ang mathematical Induction are
to coexist happily within the aame {ramework. The version of resolution we employ does not require the sentences

to be in conjunctive normal form.

Assuma our sequent contains two assertions of form F(P,) and G(P)), where P and P, are subsentences of
thase asaertlons not within the scope of any quantifigr, Suppose there exists a unitier for Py and Py, le., a
substitution @ such that P;O and P, are ldantical. We can take § to be the most general unifler. The AA-resolution

rule allows us to deduce the new assertion

Fltrue)d or G{false)d,

and add It to the sequent. (Here, Fitrue) denotes the result of replecing P, by true In F{P,). Of cowrsse, wa may
need to do the usual renaming to ensura that F(P,) and G(P3} have no variables in common.) We will call § the
unifying substitution and P8 (=P ,6) the dliminated subspression; the deduced assartion Is called the resolvent,

For example, suppose our sequent contains the assertions
if (Plx) and Qb)) then R(x)

and
Pla) and X3).
The two subsentances "P(x) and Xb)" and "Pla) and Q(y)* can be unified by the substitution
Gaf[xearyebd}
Therefore, the AA-resclution rule aliows us to eliminate ths subaxpression "P(a) and X#)" and derive the conclusion
(if true then Ria)) or false,
which reduces to
Ria)
by application of the appropriate transformation rutes.

A "non-clausal’ rasolution rule aimilar to ours has been developed by Murray [1878]. Other such rulas have
been proposed by Wilkins [1973] and Nilsson [1877].

THE RESOLUTION RULES

Wae have defined the AA-resolution rula to derive conclusions {rom assartions:

the AA-resclution rule

aisertions

F(Py)
G{Pg}

Fltrue)d or G{false¥)

whera P,0 = P9, and § is most general.

By duality, we can regard goals as negated assertions; consequently, the following threa rules are coroliaries of
tho AA-reaoiution rula:
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the GO-resolution rule

Jools

F(P}
G{P;)

Fltrue)d end G{false¥d

the GA-resolution rule

assertions goals

otr) FPY)
]

Fltrue) and (not Glfalse¥d)

and a dual AG-resultion tule, whera P, Pa. and @ satisfy the aame condition as for the AA-resolution ruie.

If at imast one of the sentences to which a resolution rule Is applied has a cotrasponding output axprossion, the
resolvent will also have an output expression. If only one of the sentences hes an ocutput exprassion, say f, then
the reaclvant will have the output expression 18, On the other hand, If the two sentencas F(P;) and G(P;} have
output exprassions [, and {3, respactiveiy, the resolvent wili have the output exprassion

if P\0 then 1,0 else 150,

For example, suppose we have derlved the two goals

max{tati{l}) & Aead{l) mox{tall{l)
and tailil) = [}

not{ max{tall(t)) 2 Aead(l}) Aead(l}
and tait{l) » 1)

Then by GG-resolution, eliminating the subsantence max{tall{)) 2 Aeadil), we can derive the new goai

(true and tail{l) = {3} and if max{raitld) 2 headld)
(not{false) and tail{t) « [} then max{tail{))
else head(l)
which can be reduced to
tatl{l) = [] if mox{tailil)) 2 head(l)
then max{tailll))
else head(l)

A “potarity strategy” adapted from Murray [1878] restticts the application of the rasolution rulas.
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MATHEMATICAL INDUCTION AND THE FORMATION OF RECURSIVE CALLS

Mathematical Induction is of spacial Importance for deductive systems intended for program synthesis, bacause
It ts only by the application of some form of the induction principie that recursive calls or lterative loops are
Introduced Inte the program being constructed. The induction rule wa employ Is & version of the principle of
mathematical induction over a well-founded aet, known In the computer~sclonce literature as "structural inductlon.”

We may express the principie as follows:

Let W ba a set that Is well-founded under an ordaring <.
To show that & property F(e) is true for svary element ¢ of W,
prove that for an arbitrary element ¢ of W:
It for ailu,
it u {e then F(u)
than F(a).
For axample, If W s the set of nonnegative Integers ordered by the relation <, the principle reduces to the famtiar

complete-induction principie.
Thus, in attempting to prove that a theorem of form F{a) holds for each element ¢ of a well-founded set, the wali-
foundead induction principle permits us to assume an induction hypothesis
Jor ali u, if u < a then Flu)

in our affort to derive F(g). In other words, we can assume inductively that the theoram holds for all 4 that are less
than ¢ In the well-founded orderlng. In our system, the wall-founded induction principie Is represented by a

ssparate deduction rule. We present only a special case of this rule here.

Suppose we are constructing a program whosa spacification is of form

fla) <& find 2 such fhat
for somey, Rig, ¥, 2)
where P(a). :

Then our Initial sequent Is

assertions goals outpul

Pla)

Ria, 3. 0 z

Then we can always add to our sequent a new assertion, the Induction hypothesls

tfu<a
then if P}
then R, glu), fu)

Here, £ 18 a new Skolem functlon corresponding to the variabie ¥, The particular well-founded ordering < to be
employed In the proof has not yet been datermined.

Let us paraphrase: We are attempting to construct a program f such that, for &n arbitrary Input ¢ satistying the
Input conditlon Pla), the output fla) will satisfy the cutput condition Ria, v, fla)), for some 3. By the waelli-foundead
Induction principla, we can assume inductively that for evary u less than a in some well-founded ordaring such that
the Input condition P{u} holds, the output fu) will satisty the same cutput condition R(u, glu), Au)), for some glu).

The above ptinciple applies If the program f has mora than one Input. In this case, we conslder 2 to be & tupie of
inputs, and find an appropriate well-founded ordaring over tuples.

In ganerai, wa could Introduce an industion hypothasis corrasponding to any subset of the assertions or goals in
our sequent, not just the initial assertion and goal; most of these Induction hypotheses would not be relevant to the
tinal proof, and the proliferation of new assertions would obstruct our efforts to find a proof. Therefore, we
introdiice the following recurrence itralegy for detarmining when to introduce an Induction hypothesis,
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Let us rastrict our attention to the case where the induction hypothesis Is derlved from the Initia! assartion and
goal. Suppose that X, ¥, 1} Is some aubexprassion of tha Inltiai goal; then that goai may be written

R(Xe, ¥, .

Suppose further that st some point In the darivation an assartion or goal of form

S, ¥, 2'n
is daveloped, wherat is an arbitrary term and y' and 2’ are distinct variables. In other words, the newly da