
Automated Reasoning:
From Bold Dreams to

Computer Science Methodology

Robert L. Constable

Cornell University

From Bold Dreams to
Computer Science Methodology

 The title suggests my main point --
that our subject, automated
reasoning, is integral to the basic
methodology of computer science.

Outline

 My plan is to develop this theme.

 -- first by connecting it to Herbrand’s work

 -- then by looking at why automated
reasoning is becoming so important in CS

 -- finally by looking at how other Herbrand

 award scientists have contributed to my

 work and how that work advances this

 trend in CS

Computer Science

 A definition of CS that I like is:

 Computer science is the automation of
intellectual processes.

 It is a widely used definition in many areas of

 computer science.

Nature of Computer Science

 Although Herbrand did not know of computer
science and did not have a vision like that of

 Leibniz for a calculus of reason (calculus
ratiocinator), I think he would have liked CS
and this definition very much.

 Here is why I think this.

Herbrand and Computer Science

 Claude Chevalley said this about Jacques
Herbrand (almost verbatim):

 “Just as mathematical physics permits us to
penetrate further and further into the
structure of matter, logic allows us to describe
something nearer yet to us than our
sensations: our intellectual thought.”

Herbrand and CS

 Nowadays this quote could have been:

 “ Just as mathematical physics permits us to
penetrate further and further into the
structure of matter, logic and computer
science allow us to precisely describe
something nearer yet to us than our
sensations: our intellectual thought.”

Constructivity in CS

 Computer Science is one of the most
mathematical disciplines, and much of its
mathematics is about how to find efficient
algorithms and good data structures for them.

 So computer scientists understand
constructive mathematics intuitively.

 Most mathematicians also prefer constructive
proofs if they can find them.

Constructivity in CS

 I have always been very interested in
constructive logic because constructive formal
theories are programming languages.

 In this setting the computational content of
constructive proofs are programs and
elements of data types.

Herbrand’s Constructive Approach

 Warren Goldfarb edited the 1968 book

 Jacques Herbrand: Écripts Logiques

in which he says about Herbrand’s Theorem:

“… this theorem also furnishes constructive
insight into nonconstructive notions such as
satisfiability.”

Constructive Methods

 Herbrand used constructive (finitist) methods and
could not bring himself to state what became
Gödel’s completeness theorem.

 See Martin Davis, Prehistory and Early History of

Automated Deduction, in Automation of Reasoning 1:

 “… Herbrand could not permit himself the non-
constructive step necessary to obtain the
completeness theorem itself.”

Constructive Methods

 I think Herbrand would have liked constructive
type theory and the approach of Kolmogorov
and Heyting in axiomatizing constructive logic.

 He might even have discovered first the
completeness result for intuitionistic first-
order logic that we can now prove
constructively.

Outline

 -- then by looking at why automated
reasoning is becoming so important in CS

 -- finally by looking at how other Herbrand

 award scientists have contributed to my

 work and how that work advances this

 trend in CS

Automated Reasoning is Central

 On this view of computer science, automated
reasoning is essential. That is not yet the
common narrative, except for people who
have experienced the power of proof
assistants and other automated reasoning
tools.

This Understanding Spreads

 In computer science, automated reasoning was
associated first with Artificial Intelligence. Now it
applies in Programming Languages, and that
subfield is spreading our ideas and proof
technology into Systems.

 Soon automated reasoning could be embraced in

Computing Theory and then in computer science
as a whole, think of Probabilistically Checkable
Proofs (PCP) for instance, versus incompleteness
and undecidability.

Step by Step

 • AI and Logic made AR into a field.

 • AR changed the PL field – proof assistants.

 • PL became a vector for AR into Systems.

 • Systems is a game changing area of CS.

 • Systems needs AR to fly safely in the clouds.

 • Theory, like math, will use AR for results.

PL as a Vector for AR into Systems

 Coq and Nuprl are new kinds of programming

 assistants, supporting rich dependently typed

 programming languages.

 Programmers learn to specify their code with
dependent types and logic.

 They learn to prove that programs, protocols, and
systems meet specifications, and test those
specifications against behaviors and models.

Formal proofs are done with AR

 I can speak with some authority about Coq and Nuprl
proofs, the PRL Group uses both proof assistants.

 We use Coq to formalize the constructive type theory
native to Nuprl, CTT14 [Anand, Rahli 14],

 Towards a Formally Verified Proof Assistant, ITP 14.

 We use Coq to formally prove our rules correct
semantically and to export CTT14, the type theory
implemented by Nuprl.

Outline

 -- finally by looking at how other Herbrand

 award scientists have contributed to my

 work and how that work advances this

 trend in CS

Coq and Nuprl Proof Assistants use
Advanced AR

1. Substantial induction packages informed by
Boyer & Moore, Alan Bundy.

2. Proof methods for non-classical logics using
results of Fitting.

3. Bibel gave us the connection method and
Christoph Kreitz, a long term partner who with
Otten gave us JProver for MetaPRL, also used by
Coq at one point.

4. Clarke style model checkers are used at
specification time and during proof attempts.

Coq and Nuprl Proof Systems use
Advanced AR

 5. Andrews and de Bruijn made us brave about
automating type theory reasoning.

6. Kapur, Dershowitz, Huet, and Paulson gave
Nuprl a remarkable rewrite system
implemented by Paul Jackson and extended
regularly by Mark Bickford.

7. Everyone uses unification from Robinson and
the Davis, Putnam procedure.

8. We use cong closure of Nelson, Kozen, et al.

Coq and Nuprl Proof Systems use
Advanced AR

 Nearly half of the Herbrand awards represent
contributions to AR driven proof assistants that I
know well such as Coq, HOL, Nuprl, and MetaPRL.

 These provers also use the Edinburgh LCF tactic
mechanism that I associate with Robin Milner’s
Turing Award. These systems added automated
techniques in the LCF setting right from the start
and proved some of them correct.

Conclusions

 It is a near certainty that proof assistants like
Agda, Coq, HOL, Nuprl, and MetaPRL will
continue to advance mathematics, e.g.
Homotopy Type Theory is a current example.

 They will support formal methods critical to

security, reliability, and trust – especially in cloud
based computing.

Conclusions

 Noteworthy milestones accumulate such as seL4
verification, Multi-Paxos synthesis, formal models
of C and Java, the Four Color Theorem and

 Feit-Thompson Theorem (odd order theorem),
solutions to open problems, automatic
conversion of classical results to constructive
ones, and so forth.

 We will find measures like the older de Bruijn

index, measures of trust, fun factors and stun
factors.

Predictions

 Everyone who uses proof assistants senses
their value in CS and Maths education as well
as in programming.

 Something revolutionary will happen when
proof assistants reach the schools, as they will
in due course.

What I Believe

 I believe that Automated Reasoning will
profoundly change the way mathematics and
programming are done and taught, the way
software is built, and the way logic and
computer science are understood.

Special Thanks to My Students

 The work cited in the award could not have been
done without my many superb PhD students who
worked with me in the area, nearly half of my
students including these:

 M. O’Donnell, J. Bates, R. Harper, S. Allen,
 N. Mendler, D. Howe, T. Griffin, S. Smith, D. Basin,
 R. Cleaveland, P. Jackson, R. Moten, C. Murthy,
 K. Crary, J. Underwood, J. Caldwell, L. Lorigo,
 J. Hickey, A. Nogin, A. Kopylov, A. Anand.

Others as Well

 Ed Clarke worked on AR after he graduated,
and Kurt Mehlhorn only recently has become
interested in the area.

 Many of my Cornell colleagues have also
contributed and have been very supportive,
especially Dexter Kozen whom I mentioned
already for his important AR work used in
Nuprl.

Others as Well

 My long time collaborator Mark Bickford and
our team research staff, Richard Eaton and
Vincent Rahli, have been the heart of Nuprl
and our recent work on distributed systems
with the Cornell systems group, especially
with Robbert van Renesse and Ken Birman.

References

• Developing Correctly Replicated Databases Using Formal
Tools, Nicolas Schiper, Vincent Rahli, Robbert van Renesse,
Mark Bickford, and Robert L. Constable, The 44th Annual
IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), Atlanta, GA, June 2014.

• Towards a Formally Verified Proof Assistant, Abhishek Anand,
Vincent Rahli, The 5th Conference on Interactive Theorem
Proving (ITP), Vienna, Austria, July 2014.

• A Type Theory with Partial Equivalence Relations as Types,
Abhishek Anand, Mark Bickford, Robert Constable, Vincent
Rahli, TYPES 2014: Types for Proofs and Programs, Paris, May
2014.

 THE END, THANK YOU

Notes and References

1. Automation of Reasoning Vols 1 and 2 edited
by J. Siekmann, G. Wrightson, 1983.

2. Jacques Herbrand: Écripts Logiques edited

 by Warren Goldfarb 1968.

